Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/117927
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Nigam, Apurv | en_US |
dc.contributor.author | Penate-Sanchez, Adrian | en_US |
dc.contributor.author | Agapito, Lourdes | en_US |
dc.date.accessioned | 2022-09-07T17:23:17Z | - |
dc.date.available | 2022-09-07T17:23:17Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.issn | 2377-3766 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/117927 | - |
dc.description.abstract | Coordinate regression has established itself as one of the most successful current trends in model-based 6 degree of freedom (6-DOF) object pose estimation from a single image. The underlying idea is to train a system that can regress the three-dimensional coordinates of an object, given an input RGB or RGB-D image and known object geometry, followed by a robust procedure such as RANSAC to optimize the object pose. These coordinate regression based approaches exhibit state-of-the-art performance by using pixel-level cues to model the probability distribution of object parts within the image. However, they fail to capture global information at the object level to learn accurate foreground/background segmentation. In this letter, we show that combining global features for object segmentation and local features for coordinate regression results in pixel-accurate object boundary detections and consequently a substantial reduction in outliers and an increase in overall performance. We propose a deep architecture with an instance-level object segmentation network that exploits global image information for object/background segmentation and a pixel-level classification network for coordinate regression based on local features. We evaluate our approach on the standard ground-truth 6-DOF pose estimation benchmarks and show that our joint approach to accurate object segmentation and coordinate regression results in the state-of-the-art performance on both RGB and RGB-D 6-DOF pose estimation. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | IEEE Robotics and Automation Letters | en_US |
dc.source | IEEE Robotics and Automation Letters, [2377-3766], v.3 (4), p. 3960 - 3967 (2018) | en_US |
dc.subject | 1203 Ciencia de los ordenadores | en_US |
dc.subject.other | Object detection | en_US |
dc.subject.other | Segmentation and categorization | en_US |
dc.subject.other | Deep learning in robotics and automation | en_US |
dc.title | Detect globally, label locally: learning accurate 6-DOF object pose estimation by joint segmentation and coordinate regression | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/LRA.2018.2858446 | en_US |
dc.identifier.scopus | 2-s2.0-85063308048 | - |
dc.identifier.isi | WOS:000441444700037 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | 0000-0003-2876-3301 | - |
dc.identifier.eissn | 2377-3766 | - |
dc.description.lastpage | 3967 | en_US |
dc.identifier.issue | 4 | - |
dc.description.firstpage | 3960 | en_US |
dc.relation.volume | 3 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.identifier.external | 67238719 | - |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | october 2018 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.esci | ESCI | |
item.grantfulltext | restricted | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2876-3301 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Peñate Sánchez, Adrián | - |
Colección: | Artículos |
Citas SCOPUSTM
15
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
11
actualizado el 17-nov-2024
Visitas
82
actualizado el 16-nov-2024
Descargas
104
actualizado el 16-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.