Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/117927
Campo DC Valoridioma
dc.contributor.authorNigam, Apurven_US
dc.contributor.authorPenate-Sanchez, Adrianen_US
dc.contributor.authorAgapito, Lourdesen_US
dc.date.accessioned2022-09-07T17:23:17Z-
dc.date.available2022-09-07T17:23:17Z-
dc.date.issued2018en_US
dc.identifier.issn2377-3766en_US
dc.identifier.urihttp://hdl.handle.net/10553/117927-
dc.description.abstractCoordinate regression has established itself as one of the most successful current trends in model-based 6 degree of freedom (6-DOF) object pose estimation from a single image. The underlying idea is to train a system that can regress the three-dimensional coordinates of an object, given an input RGB or RGB-D image and known object geometry, followed by a robust procedure such as RANSAC to optimize the object pose. These coordinate regression based approaches exhibit state-of-the-art performance by using pixel-level cues to model the probability distribution of object parts within the image. However, they fail to capture global information at the object level to learn accurate foreground/background segmentation. In this letter, we show that combining global features for object segmentation and local features for coordinate regression results in pixel-accurate object boundary detections and consequently a substantial reduction in outliers and an increase in overall performance. We propose a deep architecture with an instance-level object segmentation network that exploits global image information for object/background segmentation and a pixel-level classification network for coordinate regression based on local features. We evaluate our approach on the standard ground-truth 6-DOF pose estimation benchmarks and show that our joint approach to accurate object segmentation and coordinate regression results in the state-of-the-art performance on both RGB and RGB-D 6-DOF pose estimation.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Robotics and Automation Lettersen_US
dc.sourceIEEE Robotics and Automation Letters, [2377-3766], v.3 (4), p. 3960 - 3967 (2018)en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherObject detectionen_US
dc.subject.otherSegmentation and categorizationen_US
dc.subject.otherDeep learning in robotics and automationen_US
dc.titleDetect globally, label locally: learning accurate 6-DOF object pose estimation by joint segmentation and coordinate regressionen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LRA.2018.2858446en_US
dc.identifier.scopus2-s2.0-85063308048-
dc.identifier.isiWOS:000441444700037-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0003-2876-3301-
dc.identifier.eissn2377-3766-
dc.description.lastpage3967en_US
dc.identifier.issue4-
dc.description.firstpage3960en_US
dc.relation.volume3en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.identifier.external67238719-
dc.utils.revisionen_US
dc.date.coverdateoctober 2018en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.esciESCI
item.grantfulltextrestricted-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
Colección:Artículos
Unknown (5,36 MB)
Vista resumida

Citas SCOPUSTM   

15
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

11
actualizado el 17-nov-2024

Visitas

82
actualizado el 16-nov-2024

Descargas

104
actualizado el 16-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.