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Detect Globally, Label Locally: Learning Accurate
6-DOF Object Pose Estimation by Joint

Segmentation and Coordinate Regression
Apurv Nigam, Adrian Penate-Sanchez , and Lourdes Agapito

Abstract—Coordinate regression has established itself as one
of the most successful current trends in model-based 6 degree
of freedom (6-DOF) object pose estimation from a single image.
The underlying idea is to train a system that can regress the
three-dimensional coordinates of an object, given an input RGB
or RGB-D image and known object geometry, followed by a robust
procedure such as RANSAC to optimize the object pose. These
coordinate regression based approaches exhibit state-of-the-art
performance by using pixel-level cues to model the probability
distribution of object parts within the image. However, they fail
to capture global information at the object level to learn accu-
rate foreground/background segmentation. In this letter, we show
that combining global features for object segmentation and local
features for coordinate regression results in pixel-accurate object
boundary detections and consequently a substantial reduction in
outliers and an increase in overall performance. We propose a deep
architecture with an instance-level object segmentation network
that exploits global image information for object/background seg-
mentation and a pixel-level classification network for coordinate
regression based on local features. We evaluate our approach on the
standard ground-truth 6-DOF pose estimation benchmarks and
show that our joint approach to accurate object segmentation and
coordinate regression results in the state-of-the-art performance
on both RGB and RGB-D 6-DOF pose estimation.

Index Terms—Object detection, segmentation and categoriza-
tion, deep learning in robotics and automation.

I. INTRODUCTION

E STIMATING the six degree of freedom (6-DOF) pose of
the instance of an object of known geometry is a funda-

mental task for many robotics applications. In many cases, the
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objects that robots interact with will not exhibit rich visual tex-
tures and for this reason the pose estimation task cannot depend
on the recognition of point-based features such as hand-crafted
features or even features learnt from data. Although, in the case
of RGB-D input images, the availability of depth data allows to
obtain more accurate poses, in essence, the problem to be solved
is the same as in the RGB-only case: first the algorithm should
identify which pixels are part of the object and which are back-
ground or clutter; next their coordinates should be regressed and
finally a robust estimator, such as RANSAC [1] used to solve
either a 2D–3D or 3D–3D registration problem.

Current top performing state-of-the-art approaches for 6-DOF
object instance pose estimation perform coordinate regression
to recognize the different parts of the object in the image [2],
[3]. The key idea is not to predict the object pose directly but to
first regress an intermediate representation in object coordinates.
This leads to a labelling problem where each pixel is associated a
label that indicates which object part it belongs to. Once object
parts are identified, correspondences can be established with
the 3D representation, usually a 3D model, and the 6-DOF
pose can be solved for using geometric validation. The main
challenge with coordinate regression approaches is to minimize
the effect that incorrect object part detections have in the final
pose estimate. In [2] the authors introduced a formulation that
exploited local features for dense part labelling which modeled
the probability distribution over the parts of the object as well as
the background. This enabled the system to learn how to discern
if a pixel was part of the background or the object, as well as
which object part it belonged to (or in other words, what might its
coordinates/position be within the object). The main drawback
with this approach is that modeling this probability distribution
at the local, pixel-level, rather than at a global object-level,
can lead to ambiguities and to numerous incorrect object-part
labellings over the input image.

In this letter we argue the use of global learned features
to discover a pixel-accurate segmentation of the image into
foreground/background pixels and, in contrast, local features
to regress object coordinates. Our new approach combines a
dense fully convolutional segmentation neural network, that
is trained to classify pixels into background and foreground
object, and a second network that learns to regress object
coordinates given the output segmentation mask from the first
network. While the fully convolutional segmentation network
naturally makes use of global image information, which results
in accurate segmentation boundaries (and consequently fewer
misclassified pixels), the coordinate regression focuses on
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Fig. 1. Given an input RGB or RGB-D image our approach combines the
use of global image cues for foreground/background object segmentation and
local cues for coordinate regression (formulated as a discrete labeling problem).
The use of a fully convolutional architecture for the segmentation task results
in pixel-accurate object boundaries that lead to fewer outliers in the coordinate
regression task and ultimately more accurate 6-DOF poses.

pixel-level evidence to associate pixels with object parts. Since
background pixels will no longer be present, far fewer outlier
matches will be effectively handled by the pose estimation
algorithm. An overview of our approach can be seen in Fig. 1.

Our quantitative evaluation on benchmark datasets shows
that our approach outperforms state of the art methods in
RGB-D pose estimation of texture-less objects and manages
to obtain very reliable results when extending this approach to
RGB only inputs. Crucially, our method leads to fewer fore-
ground/background segmentation errors which in turn results in
improvements in the average percentage of accurately estimated
poses of 12% over previous baselines. Further, our approach is
able to halve the median rotation estimation error of its closest
competitor [4].

Our work as another clear example of the profound impact
of deep learning on robotics applications in multiple areas like
recognizing change detection in SLAM [5], performing part
affordance detection [4], [6] or camera re-localization [7], [8].

II. RELATED WORK

Traditionally, the most popular approaches to 6-DOF instance
object pose estimation were based on detecting keypoint features
coupled with a robust estimation scheme such as RANSAC [1].
However, an important limitation of this widely tested, efficient
and robust solution is that it requires the objects to be highly
textured. The sudden availability of inexpensive low cost depth
sensors enabled a surge of new methods suitable for the more
challenging problem of texture-less object pose estimation tak-
ing advantage of the depth channel. Our literature review will
therefore focus on methods that can cope with texture-less ob-
jects using RGB-D or even RGB-only images.

In a series of papers [9], [10] Hinterstoisser et al. introduced
solutions to both the RGB and RGB-D cases that relied on the
calculation of templates based on RGB boundaries and depth

normals to then perform a dictionary matching scheme to find
the pose of the object. In [11] the template features from [9]
were used in combination with a Hough forest modified to add
robustness to clutter and to perform simultaneous 3D object
detection and pose estimation. Later, Brachmann et al.’s work
[2], [3] proposed solutions that could be used on both RGB and
RGB-D scenarios with minor alterations. They were inspired
by [12], using similar feature representations and random forests
in a new formulation to obtain state of the art results on object
pose estimation. Their approach proposes to split the object into
parts, and then formulates the recognition of object parts in an
input image as a labelling problem. Similarly to our approach,
they rely on the use of robust estimators [1] and classical pose
estimation approaches [13] to estimate the final pose of the
object.

RGB-D sensors are specially important in robotics as the
presence of 3D data alongside the color input has managed to
achieve great improvements in many vital tasks. This increase
in performance is in several cases the difference between be-
ing capable of relying on vision to control the robot or not.
Examples of this increase in performance are palpable in vi-
sual odometry [14], environment mapping [15] or SLAM [16],
[17]. RGB-D cameras offer that extra bit of performance to
make even tasks as complex as understanding how to interact
physically with the environment [18].

The use of CNN-based approaches has recently become the
established trend in many robotics applications – a good ex-
ample of this is Maturana et al.’s [19], [20] approach to ob-
ject recognition in RGB-D data – and has inevitably become
the dominant paradigm in 6-DOF object pose estimation. We
also draw inspiration from deep learning architectures to solve
semantic segmentation [21] and image classification [22] prob-
lems. In [21] the authors proposed an approach that can robustly
estimate pixel labelling by learning from semantic annotations
and the use of de-convolutional layers to upscale and merge
progressively coarse to fine results.

Recent work by Porzi et al. [23] proposes a CNN-based ap-
proach to coordinate regression to obtain the 6-DOF pose of an
object in RGB-D data. Wolhart et al. [24] instead focus on learn-
ing to map input images to descriptors that can be used in nearest
neighbor search using Euclidean distance. The aim is to enforce
feature descriptors from the same object and with similar poses
to be similar while those between features arising from different
poses are forced far apart in feature space. Kehl et al. [25] used
regressed descriptors of locally sampled RGB-D patches to per-
form a voting scheme in pose space. They create a dictionary of
feature-pose pairs by training a convolutional auto-encoder [26]
on depth invariant RGB-D patches. Object-class, as opposed to
instance specific, pose estimation is tackled in [27] by learning
semantic descriptors for each part of an object category and then
solving the pose with a deformable shape model. Recently [28]
proved that there is much to gain from doing using segmentation
together with coordinate regression, in their case to improve the
estimation of 3D flow between consecutive images.

To sum up, our main contribution is a novel dual-network deep
architecture with an instance-level object segmentation network
that exploits global image information for object/background
segmentation and a pixel-level classification network for coor-
dinate regression based on local features. Our approach can be
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Fig. 2. Binning of object coordinates in the reference 3D models. We show
two examples of object coordinate clusterings (object-part labellings). The co-
ordinate regression problem is re-cast as a labelling problem where, at test time,
each pixel is associated with an object-part label.

used for RGB-D or RGB-only images and outperforms all other
approaches on the standard LINEMOD benchmark [9].

III. METHOD

Our work focuses on 6-DOF pose estimation in the case
of texture-less objects when knowledge of their 3D shape is
provided. The assumption is that a 3D model or a 3D point
cloud is known for the objects that we seek to find.

A. Discretization of Object Coordinates

Given a test image containing one of the query objects, our
solution is based on predicting the 3D coordinates on the cor-
responding 3D model for every 2D image pixel depicting the
object. Once the matches between 2D coordinates in the test
scene and 3D coordinates in the reference model have been es-
tablished, the rigid transformation that explains their relative
pose can be easily estimated. We formulate the problem of find-
ing the corresponding 3D object coordinates for each pixel in
the input image as a multi-class classification problem. We de-
note the input RGB image I ∈ Rw×h×3 , its associated depth
image D ∈ Rw×h (in the case of RGB-D input) and the set of
3D model point coordinates Xm

i = (xi, yi , zi).
Given the ground truth transformation [R|t] between points

in the object Xm
i and the camera Xc

i coordinate systems, and
known camera calibration parameters K, the 3D points Xm

i can
be projected onto the image plane to establish 2D-3D corre-
spondences.

The span of 3D object coordinates for each model (xmin :
xmax, ymin : ymax, zmin : zmax) is discretized along each di-
rection into N bins such that the 3D coordinate space is di-
vided into bins Bj ∈ N 3 . We used 5 bins per axis which
gives 5 × 5 × 5 = 125 discrete bins (as seen in Fig. 2), with
an additional bin used to label background pixels. We train a
CNN to predict, for every pixel on the object, the id of the
bin of its corresponding object coordinate. Which implies that,
∀(u, v) ∈ I ⇒ ∃Bj ; it is important to underline the fact that
there exists a unique labeling per image and that all pixels in the
image have a label. Fig. 2 illustrates the binning of two objects
from [9]. The number of bins used has been chosen empirically
from our observations, in any case small changes to the binning
size should not affect the performance dramatically.

B. Object Segmentation

Fig. 3 shows the architecture of our multi-stage CNN pipeline.
The upper part of the figure shows the Fully Convolutional
Network (FCN) used to predict the probabilities of pixels in the
input image being background or one of the object instances.
Our FCN maps an RGB image I ∈ Rw×h×3 to a probability
distribution H ∈ Rw×h×(n+1) where n is the number of objects
in the scene, n + 1 to account for the background.

Our FCN was built using VGG16 as an encoder whose last
fully connected layers were followed by a deconvolution layer
to up-scale the convolutional responses to the original size of
the input. To preserve the finer details in the upscaled output
of the FCN, we combined the output of the last fully connected
layer fc7 with finer features from pool4 and pool3 layers as sug-
gested by [21] as FCN-8. More deeper architectures could have
been used but we selected VGG16 as a compromise between
computation cost and performance.

The training data for the FCN was generated synthetically.
Ground truth segmentation masks were generated using ground
truth poses. The training error was chosen to be the average soft-
max cross entropy loss between the ground truth and network
prediction.

L(w) = − 1
N

n∑

k=1

[
yn log(ŷn ) − (1 − yn )log(1 − ŷn )

]

The final image segmentation Iseg is obtained by thresholding
the soft-max output of the up-scaled features. This stage con-
tributed greatly to avoid potential object outliers which should
not be part of the object coordinate regression and the final
robust pose estimation. We can see an example of an actual
segmentation in the top right image in Fig. 4

C. Object Coordinate Regression

The lower half of Fig. 3 shows the second stage of our
CNN architecture used to predict the object coordinate bin
labels ∀(u,v) ∈ Iseg where Iseg (u, v) �= Background. Our
choice of architecture is based on the standard AlexNet [22].
We train on patches randomly sampled from Iseg where
Iseg = Object Class and Iseg = Background. For every patch
that we sample from the object, the ground truth label for that
patch is chosen to be the object coordinate bin id of the cen-
ter pixel. The network is trained to minimize the softmax cross
entropy loss between the ground truth label and the predicted
probabilities for each class. To obtain good classification results
the number of patches sampled from the background must be
similar to those sampled from other bins. This makes sense in
our approach as most of the background pixels have been re-
moved in the object segmentation. It is due to this reason that
we select very few training patches from regions outside the
segmentation mask of the object of interest.

To achieve depth invariance, patch sizes are scaled during
training and testing based on the distance to the object. We first
set an original patch size of w × h, with a distance to the object
of d; when creating a new patch we select the center point, that
has a distance to the object di , and we scale the patch relative
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Fig. 3. Multistage CNN architecture: A fully convolutional network (FCN) predicts the segmentation mask of the object. In the second stage, object-part labels
are predicted for pixels inside the segmentation mask.

Fig. 4. Example outputs from segmentation and coordinate regression steps.
(Top left) Input image. (Top right) Estimated segmentation mask. (Bottom left)
Ground truth coordinates. (Bottom left) Estimated coordinates.

to the distance as follows

wi =
w ∗ d

di
, hi =

h ∗ d

di

An example of the estimated segmentation for a test input
image is shown in Fig. 4 (top right). The bottom left image
shows the ground truth coordinate bin labelling for that test
scene while the bottom right shows the estimated coordinates.

D. RANSAC Pose Estimation

The final step in our approach is the estimation of the 6-
DOF pose of the object instance using the object class label
and the regressed object coordinates. When testing on RGB-D
images, the availability of depth information allows us to for-
mulate this problem as the estimation of the rigid transformation
between corresponding pairs of 3D points. We use the Kabsch

Algorithm [13] to calculate the object’s rotation and translation
of the object. In the case of RGB images, we estimate the rigid
transformation between the set of corresponding 2D-3D points
using the Direct Linear Transformation method. When select-
ing image points for potential matches we only consider those
inside the estimated object segmentation mask.

In both cases, to improve the robustness of our approach
we opted to embed the estimation within a preemptive
RANSAC [32] framework. Our sampling strategy is as follows:
points in the test image are chosen such that no two pixels have
the same object coordinate labels, we ensure that point sets are
not collinear and that the distance between any two points is
always greater than a threshold of 1 cm. Finally, points are re-
projected onto the image plane using the estimated pose and
rejected as a hypothesis if their consensus is lower than an inlier
threshold of 100. We also calculate the 2D bounding box and
discard hypothesis that occupies less than 400 pixels. Meeting
the previous criteria we generate 100 pose hypothesis using a
1000 points that we will score and rank while discarding the
worst half and increasing iteratively the number of points used
to calculate the reprojection error by a 100 points in each itera-
tion. We keep discarding the worst half in each step and continue
until we are left with the best candidate.

IV. EXPERIMENTS

The evaluation has been carried out on the standard bench-
mark for 6-DOF pose estimation, Hinterstoisser et al.’s
dataset [10] — a public dataset of RGB-D images of texture-
less objects in a cluttered scene — and compared against several
state of the art algorithms. The dataset contains approximately
1200 images of each object instance (with the object depicted
in the center of the image) and ground truth 6D pose labels
are available. The dataset also provides 3D point clouds for the
query objects. Our work has focused on the RGB-D scenario
but results for RGB inputs are also shown to demonstrate that
the ideas of this letter are not specific to a single problem. Two
different metrics have been used to evaluate the quality of the
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TABLE I
NETWORK ARCHITECTURES: DETAILED DESCRIPTION OF THE LAYERS USED IN OUR OBJECT SEGMENTATION AND COORDINATE REGRESSION NETWORKS

Convolution: c[size, filters]; Fully Connected: f[size, filters]; Pooling: p[size, stride]; Deconvolution: d[size, numClasses];

TABLE II
6-DOF POSE ESTIMATION RESULTS ON RGB-D INPUT IMAGES ON THE STANDARD LINEMOD BENCHMARK DATASET [9]: COMPARISON WITH A LARGE NUMBER

OF COMPETITORS USING THE METRIC DEFINED IN [10]. OUR APPROACH OUTPERFORMS ALL BASELINES IN ALL BUT ONE SEQUENCE

TABLE III
ACCURACY OF ESTIMATED 6-DOF POSES USING RGB-D INPUTS: EVALUATION

ON THE LINEMOD DATASET [9] USING SHOTTON et al.’S METRIC [12]
(PERCENTAGE OF IMAGES WITH LESS THAN 5 CM AND 5◦ ERROR IN THE POSE

CALCULATION) COMPARING WITH OUR CLOSEST COMPETITOR [3]
FROM TABLE II

TABLE IV
MEDIAN ROTATION AND TRANSLATION ERRORS ON THE LINEMOD

DATASET [9] FOR OUR APPROACH AND OUR CLOSEST COMPETITORS [2], [3],
[23]. OUR APPROACH HALVES THE ROTATION ERROR AND ACHIEVES AN

IMPROVEMENT OF 2 MM IN TRANSLATION ERROR OVER THE SECOND BEST

PERFORMING METHOD [23]

results. To further asses the results of our method and the ac-
curacy of the retrieved poses we show qualitative results of our
results in Fig. 5 and Fig. 6.

A. Training the Object Segmentation Network

To train the Object Segmentation Network we use around
70% of all images. Since this is a small number for the task of
training a FCN, we use data augmentation techniques such as
random flipping and rotation. For further robustness we added
synthetic images to the training data by rendering the objects

TABLE V
ACCURACY OF ESTIMATED 6-DOF POSES USING RGB-ONLY INPUTS:
EVALUATION ON THE LINEMOD DATASET [9] USING SHOTTON et al.’S

METRIC [12] (PERCENTAGE OF IMAGES WITH LESS THAN 5 CM AND 5◦ ERROR

IN THE POSE CALCULATION) COMPARING WITH [3] AND AN ALGORITHM BUILT

ONLY FOR RGB INPUTS [33]

Fig. 5. Example of a Augmented reality application of our approach using
RGB-D images. We can see that the estimation of the pose is accurate enough
to perform such tasks.

from different viewpoints using the given 3D models. We used
pre-trained weights to initialize our network owing to the impor-
tance of good initialization of weights and biases. We observed
that choosing a high learning rate was forcing the network to
learn the segmentation of the object only when the object was
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Fig. 6. Qualitative results of our 6D Pose Estimation Algorithm, estimated bounding boxes drawn around different object instances in different scenes using
RGB-D images. The reprojected 3D bounding box of the object is shown to better asses the performance that can be expected from the proposed approach. The
images show that our pose estimation approach is robust to heavily cluttered environments and large differences in viewpoint.

in the center of the image as in all training images. The learning
rate and the batch size were adjusted to ensure that the network
was able to detect objects placed in different image locations
(i.e., not just at the centre of the image). Fig. 7 shows that
the segmentation network works well even in highly occluded
scenes. We used the Adam optimization algorithm, a batch size
of 2 and learning rate of 10−4 . Table I shows the exact details
of all the layers in the architecture.

B. Training the Object Coordinate Regression Network

We initialized the network using pre-trained weights from
AlexNet, trained on 15 million images across 22000 categories.
In the case of RGB-D images the 4th channel was initialised
using the mean of the R,G and B channels. Table I shows
details of the exact architecture of the network. Deciding the
number of patches to be sampled from each training image
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Fig. 7. This figure showcases the different situations that we encounter when using our approach. The first row shows the case in which our segmentation partially
fails, we can see that the duck has been detected as part of the can, but the coordinate regression correctly estimates those pixels as background. The second row
shows the case in which both the object segmentation and the coordinate regression fail to detect the incorrect pixels, but because we are using a robust estimator
like RANSAC we can still filter out the error. The third row depict the case in which we correctly segment the object, we correctly regress the coordinates and we
correctly estimate the pose.

needed some careful thought. Because not all labels are present
in the images depicting each pose but the background is present
in every scene, we chose to sample very few background
patches from each scene so that the total number of background
patches would be balanced with respect to the other 125 classes
(the discretized object coordinate labels). We sampled 800
foreground and 6 background patches from each image. Other
hyper-parameters of our network are the patch size, learning
rate and batch size which were chosen after experimenting with
several choices. Although we determine patch size according to
depth of center pixel of the object to achieve depth invariance
in detection, the patch size of one of the scenes was determined
as reference and had to be chosen manually, we found 20 × 20
pixels to work best for us. We chose the learning rate to be 10−4

and a batch size of 10 in our experiments. For this network we
used Stochastic Gradient Descent as the optimization algorithm.

C. Evaluation Metrics

Our evaluation uses both of the standard metrics defined in the
literature. Hinterstoisser et al.’s metric [10] focuses mostly on
the success of the 3D detection task. A detection is considered
correct if the average distance between the 3D model points
aligned with the ground truth pose or the estimated pose is less
than 10% of the total size of the object. While this metric is quite
relaxed in terms of actual accuracy, it is useful to determine
whether or not the object has been correctly detected in 3D
space. The results for RGB-D input data are shown in Table II.

The second metric, defined in [12], considers a pose to be
correct if the error between the ground truth pose and the esti-
mated pose is less than 5◦ and 5 cm. This metric is much more
stringent in what it considers to be a correct pose and gives
better insight into the actual accuracy of detections. The results

for RGB-D input images are shown in Table III while Table V
shows results on RGB inputs.

To further asses the quality of the estimated poses we provide
the median rotation and translation errors. The median clearly
shows the typical pose error that we might expect from our
approach. These results are shown in Table IV.

D. Evaluation Results for RGB-D images

Table II shows a comparison with a large number of compet-
ing approaches [2], [3], [10], [23], [29]–[31] on the task of 3D
detection using Hinterstoisser et al.’s metric [10]. Our approach
achieves the best average 3D detection rate, outperforming all
baselines in all but one object sequence. To further evaluate
actual accuracy, we selected our closest competitor [3] from
Table II and compared using Shotton et al.’s stricter metric [12].
Table III shows an average improvement of 12% over [3]. Fi-
nally, we assess the typical errors one can expect from our algo-
rithm by calculating the median rotation and translation errors
over all images (see Table IV). Our approach halves the rotation
error of its closest competitor [4] (2.1◦ vs 4.6◦) and achieves an
improvement of 2 mm in translation error. Since all approaches
use Kabsch’s algorithm [13] to estimate the final pose, we con-
clude that our improvements in performance must be due to the
pixel-accurate object boundary detections, leading to a substan-
tial reduction in outliers, achieved thanks to our strategy of com-
bining the object segmentation and coordinate regression tasks.

E. Evaluation Results for RGB Images

The extension of our algorithm to RGB input images is fairly
straightforward with slight modifications to the architecture (to
adapt from four to three input channels) and to the geometric
validation step. In essence, a 2D–3D perspective pose estima-
tion problem must be solved instead of 3D–3D. Once more we
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show a comparison of our approach against the top performing
baseline solves both for RGB and RGB-D [3] where we show an
improvement of 5% in the average percentage of accurately es-
timated poses. We also show results against the best performing
RGB only algorithm [33], in this work the focus is in refining
the pose rather than creating a general approach that can be ap-
plied to both RGB and RGB-D cases. Another of the drawbacks
of the approach in [33] is that the employ a holistic approach
rather than a part based approach. Part based approaches are
robust to partial occlusions by construction while [33] needs
to introduce occlusion during the training process to be able to
cope with them.

F. Robustness to Occlusion and Clutter

Fig. 7 showcases our algorithm’s ability to cope with occlu-
sions. Since we largely depend on correct prediction of object
coordinate labels, the successful pose estimation in these tough
scenarios can be attributed to the robust segmentation achieved
with our segmentation network leading to higher accuracy in
the coordinate regression step.

V. CONCLUSION AND FUTURE WORK

We have shown that the use of global object segmentation
and local labeling of coordinates leads to accurate estimations
that can be exploited by classic geometric pose estimation. The
numerous safeguards put in place to avoid outliers alleviates
greatly the task that the final classic 6-DOF pose estimation
algorithm needs to solve. The versatility of our approach that
can provide accurate poses for both RGB and RGB-D input
images is a clear strength. An example of its application of our
approach to augmented reality can be seen in Fig. 5. Interesting
future work would be to extend the successful features of our
algorithm to the case of dealing with object classes/categories
instead of object instances.
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