Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/117927
DC FieldValueLanguage
dc.contributor.authorNigam, Apurven_US
dc.contributor.authorPenate-Sanchez, Adrianen_US
dc.contributor.authorAgapito, Lourdesen_US
dc.date.accessioned2022-09-07T17:23:17Z-
dc.date.available2022-09-07T17:23:17Z-
dc.date.issued2018en_US
dc.identifier.issn2377-3766en_US
dc.identifier.urihttp://hdl.handle.net/10553/117927-
dc.description.abstractCoordinate regression has established itself as one of the most successful current trends in model-based 6 degree of freedom (6-DOF) object pose estimation from a single image. The underlying idea is to train a system that can regress the three-dimensional coordinates of an object, given an input RGB or RGB-D image and known object geometry, followed by a robust procedure such as RANSAC to optimize the object pose. These coordinate regression based approaches exhibit state-of-the-art performance by using pixel-level cues to model the probability distribution of object parts within the image. However, they fail to capture global information at the object level to learn accurate foreground/background segmentation. In this letter, we show that combining global features for object segmentation and local features for coordinate regression results in pixel-accurate object boundary detections and consequently a substantial reduction in outliers and an increase in overall performance. We propose a deep architecture with an instance-level object segmentation network that exploits global image information for object/background segmentation and a pixel-level classification network for coordinate regression based on local features. We evaluate our approach on the standard ground-truth 6-DOF pose estimation benchmarks and show that our joint approach to accurate object segmentation and coordinate regression results in the state-of-the-art performance on both RGB and RGB-D 6-DOF pose estimation.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Robotics and Automation Lettersen_US
dc.sourceIEEE Robotics and Automation Letters, [2377-3766], v.3 (4), p. 3960 - 3967 (2018)en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherObject detectionen_US
dc.subject.otherSegmentation and categorizationen_US
dc.subject.otherDeep learning in robotics and automationen_US
dc.titleDetect globally, label locally: learning accurate 6-DOF object pose estimation by joint segmentation and coordinate regressionen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LRA.2018.2858446en_US
dc.identifier.scopus2-s2.0-85063308048-
dc.identifier.isiWOS:000441444700037-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0003-2876-3301-
dc.identifier.eissn2377-3766-
dc.description.lastpage3967en_US
dc.identifier.issue4-
dc.description.firstpage3960en_US
dc.relation.volume3en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.identifier.external67238719-
dc.utils.revisionen_US
dc.date.coverdateoctober 2018en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.esciESCI
item.grantfulltextrestricted-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
Appears in Collections:Artículos
Unknown (5,36 MB)
Show simple item record

SCOPUSTM   
Citations

15
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

11
checked on Nov 17, 2024

Page view(s)

82
checked on Nov 16, 2024

Download(s)

104
checked on Nov 16, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.