Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/117927
Título: | Detect globally, label locally: learning accurate 6-DOF object pose estimation by joint segmentation and coordinate regression | Autores/as: | Nigam, Apurv Penate-Sanchez, Adrian Agapito, Lourdes |
Clasificación UNESCO: | 1203 Ciencia de los ordenadores | Palabras clave: | Object detection Segmentation and categorization Deep learning in robotics and automation |
Fecha de publicación: | 2018 | Publicación seriada: | IEEE Robotics and Automation Letters | Resumen: | Coordinate regression has established itself as one of the most successful current trends in model-based 6 degree of freedom (6-DOF) object pose estimation from a single image. The underlying idea is to train a system that can regress the three-dimensional coordinates of an object, given an input RGB or RGB-D image and known object geometry, followed by a robust procedure such as RANSAC to optimize the object pose. These coordinate regression based approaches exhibit state-of-the-art performance by using pixel-level cues to model the probability distribution of object parts within the image. However, they fail to capture global information at the object level to learn accurate foreground/background segmentation. In this letter, we show that combining global features for object segmentation and local features for coordinate regression results in pixel-accurate object boundary detections and consequently a substantial reduction in outliers and an increase in overall performance. We propose a deep architecture with an instance-level object segmentation network that exploits global image information for object/background segmentation and a pixel-level classification network for coordinate regression based on local features. We evaluate our approach on the standard ground-truth 6-DOF pose estimation benchmarks and show that our joint approach to accurate object segmentation and coordinate regression results in the state-of-the-art performance on both RGB and RGB-D 6-DOF pose estimation. | URI: | http://hdl.handle.net/10553/117927 | ISSN: | 2377-3766 | DOI: | 10.1109/LRA.2018.2858446 | Fuente: | IEEE Robotics and Automation Letters, [2377-3766], v.3 (4), p. 3960 - 3967 (2018) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.