Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/117926
Campo DC Valoridioma
dc.contributor.authorPeñate Sánchez, Adriánen_US
dc.contributor.authorSerradell, Eduarden_US
dc.contributor.authorAndrade-Cetto, Juanen_US
dc.contributor.authorMoreno-Noguer, Francescen_US
dc.date.accessioned2022-09-07T17:08:20Z-
dc.date.available2022-09-07T17:08:20Z-
dc.date.issued2013en_US
dc.identifier.isbn1-901725-49-9-
dc.identifier.urihttp://hdl.handle.net/10553/117926-
dc.description.abstractSimultaneously recovering the camera pose and correspondences between a set of 2D-image and 3D-model points is a difficult problem, especially when the 2D-3D matches cannot be established based on appearance only. The problem becomes even more challenging when input images are acquired with an uncalibrated camera with varying zoom, which yields strong ambiguities between translation and focal length. We present a solution to this problem using only geometrical information. Our approach owes its robustness to an initial stage in which the joint pose and focal length solution space is split into several Gaussian regions. At runtime, each of these regions is explored using an hypothesize-and-test approach, in which the potential number of 2D-3D matches is progressively reduced using informed search through Kalman updates, iteratively refining the pose and focal length parameters. The technique is exhaustive but efficient, significantly improving previous methods in terms of robustness to outliers and noise.en_US
dc.languageengen_US
dc.publisherB M V A PRESS-
dc.relation.ispartof24th British Machine Vision Conferenceen_US
dc.source24th British Machine Vision Conference, Bristolen_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherFocal lenghten_US
dc.titleSimultaneous pose, focal length and 2D-to-3D correspondences from noisy observationsen_US
dc.typeConference Paperen_US
dc.relation.conferenceBritish Machine Vision Conference 2013-
dc.identifier.doi10.5244/c.27.82en_US
dc.identifier.scopus2-s2.0-84898405418-
dc.identifier.isiWOS:000346352700079-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.investigacionIngeniería y Arquitecturaen_US
dc.identifier.external67238846-
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextrestricted-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
Colección:Artículos
Unknown (2,24 MB)
Vista resumida

Citas SCOPUSTM   

2
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 24-nov-2024

Visitas

36
actualizado el 03-feb-2024

Descargas

5
actualizado el 03-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.