Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/117926
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Peñate Sánchez, Adrián | en_US |
dc.contributor.author | Serradell, Eduard | en_US |
dc.contributor.author | Andrade-Cetto, Juan | en_US |
dc.contributor.author | Moreno-Noguer, Francesc | en_US |
dc.date.accessioned | 2022-09-07T17:08:20Z | - |
dc.date.available | 2022-09-07T17:08:20Z | - |
dc.date.issued | 2013 | en_US |
dc.identifier.isbn | 1-901725-49-9 | - |
dc.identifier.uri | http://hdl.handle.net/10553/117926 | - |
dc.description.abstract | Simultaneously recovering the camera pose and correspondences between a set of 2D-image and 3D-model points is a difficult problem, especially when the 2D-3D matches cannot be established based on appearance only. The problem becomes even more challenging when input images are acquired with an uncalibrated camera with varying zoom, which yields strong ambiguities between translation and focal length. We present a solution to this problem using only geometrical information. Our approach owes its robustness to an initial stage in which the joint pose and focal length solution space is split into several Gaussian regions. At runtime, each of these regions is explored using an hypothesize-and-test approach, in which the potential number of 2D-3D matches is progressively reduced using informed search through Kalman updates, iteratively refining the pose and focal length parameters. The technique is exhaustive but efficient, significantly improving previous methods in terms of robustness to outliers and noise. | en_US |
dc.language | eng | en_US |
dc.publisher | B M V A PRESS | - |
dc.relation.ispartof | 24th British Machine Vision Conference | en_US |
dc.source | 24th British Machine Vision Conference, Bristol | en_US |
dc.subject | 1203 Ciencia de los ordenadores | en_US |
dc.subject.other | Focal lenght | en_US |
dc.title | Simultaneous pose, focal length and 2D-to-3D correspondences from noisy observations | en_US |
dc.type | Conference Paper | en_US |
dc.relation.conference | British Machine Vision Conference 2013 | - |
dc.identifier.doi | 10.5244/c.27.82 | en_US |
dc.identifier.scopus | 2-s2.0-84898405418 | - |
dc.identifier.isi | WOS:000346352700079 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.identifier.external | 67238846 | - |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
item.grantfulltext | restricted | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2876-3301 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Peñate Sánchez, Adrián | - |
Colección: | Artículos |
Citas SCOPUSTM
2
actualizado el 24-nov-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 24-nov-2024
Visitas
36
actualizado el 03-feb-2024
Descargas
5
actualizado el 03-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.