Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/117861
Título: Nonlinear extended blind end-member and abundance extraction for hyperspectral images
Autores/as: Campos-Delgado, Daniel U.
Cruz-Guerrero, Inés A.
Mendoza-Chavarría, Juan N.
Mejía-Rodríguez, Aldo R.
Ortega, Samuel 
Fabelo, Himar A. 
Callicó, Gustavo M. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Hyperspectral Imaging
Multi-Linear Model
Nonlinear Unmixing
Fecha de publicación: 2022
Publicación seriada: Signal Processing 
Resumen: Hyperspectral images had become an essential tool in different application frameworks, such as mineral exploration, food inspection, and medical assessment, among others. However, the interpretability of these images involves an initial processing stage to model the optical interaction and analyze the spectral information. In this work, we study nonlinear unmixing of hyperspectral images by a multilinear mixture model (MMM). In this sense, we propose a nonlinear version of the extended blind end-member and abundance extraction (NEBEAE) method for blind unmixing, i.e. estimation of the end-members, their abundances, and the nonlinear interaction levels. In the problem formulation, we include a normalization step in the hyperspectral measurements for the end-members and abundances to improve robustness. The blind unmixing process can be separated into three estimation subproblems for each component in the model, which are solved by a cyclic coordinate descent algorithm and quadratic constrained optimizations. Each problem is mathematically formulated and derived to construct the general nonlinear iterative unmixing technique. We evaluated our proposal with synthetic and experimental datasets from the remote sensing literature (Cuprite, Urban and Pavia University scene datasets) and a biomedical hyperspectral imaging application. In the validation stage, we compared NEBEAE with three state-of-the-art methods to show its advantages in terms of precision and computational time.
URI: http://hdl.handle.net/10553/117861
ISSN: 0165-1684
DOI: 10.1016/j.sigpro.2022.108718
Fuente: Signal Processing[ISSN 0165-1684],v. 201, (Diciembre 2022)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.