Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/117861
Campo DC Valoridioma
dc.contributor.authorCampos-Delgado, Daniel U.en_US
dc.contributor.authorCruz-Guerrero, Inés A.en_US
dc.contributor.authorMendoza-Chavarría, Juan N.en_US
dc.contributor.authorMejía-Rodríguez, Aldo R.en_US
dc.contributor.authorOrtega, Samuelen_US
dc.contributor.authorFabelo, Himar A.en_US
dc.contributor.authorCallicó, Gustavo M.en_US
dc.date.accessioned2022-08-31T09:00:23Z-
dc.date.available2022-08-31T09:00:23Z-
dc.date.issued2022en_US
dc.identifier.issn0165-1684en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/117861-
dc.description.abstractHyperspectral images had become an essential tool in different application frameworks, such as mineral exploration, food inspection, and medical assessment, among others. However, the interpretability of these images involves an initial processing stage to model the optical interaction and analyze the spectral information. In this work, we study nonlinear unmixing of hyperspectral images by a multilinear mixture model (MMM). In this sense, we propose a nonlinear version of the extended blind end-member and abundance extraction (NEBEAE) method for blind unmixing, i.e. estimation of the end-members, their abundances, and the nonlinear interaction levels. In the problem formulation, we include a normalization step in the hyperspectral measurements for the end-members and abundances to improve robustness. The blind unmixing process can be separated into three estimation subproblems for each component in the model, which are solved by a cyclic coordinate descent algorithm and quadratic constrained optimizations. Each problem is mathematically formulated and derived to construct the general nonlinear iterative unmixing technique. We evaluated our proposal with synthetic and experimental datasets from the remote sensing literature (Cuprite, Urban and Pavia University scene datasets) and a biomedical hyperspectral imaging application. In the validation stage, we compared NEBEAE with three state-of-the-art methods to show its advantages in terms of precision and computational time.en_US
dc.languageengen_US
dc.relation.ispartofSignal Processingen_US
dc.sourceSignal Processing[ISSN 0165-1684],v. 201, (Diciembre 2022)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherHyperspectral Imagingen_US
dc.subject.otherMulti-Linear Modelen_US
dc.subject.otherNonlinear Unmixingen_US
dc.titleNonlinear extended blind end-member and abundance extraction for hyperspectral imagesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.sigpro.2022.108718en_US
dc.identifier.scopus85135708579-
dc.contributor.orcid0000-0002-1555-0131-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0001-9740-1190-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-7519-954X-
dc.contributor.orcid0000-0002-9794-490X-
dc.contributor.orcid0000-0002-3784-5504-
dc.contributor.authorscopusid57207809029-
dc.contributor.authorscopusid57212001832-
dc.contributor.authorscopusid57713505200-
dc.contributor.authorscopusid54788092500-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid56006321500-
dc.relation.volume201en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,231
dc.description.jcr4,4
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

11
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

8
actualizado el 30-mar-2025

Visitas

80
actualizado el 29-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.