Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/11767
Title: Regularization of 3D cylindrical surfaces
Authors: Alvarez, Luis 
Cuenca Hernández, Carmelo
Sánchez, Javier 
UNESCO Clasification: 220990 Tratamiento digital. Imágenes
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Issue Date: 2003
Journal: Lecture Notes in Computer Science 
Abstract: In this paper we present a method for the regularization of 3D cylindrical surfaces. By a cylindrical surface we mean a 3D surface that can be expressed as an application S(l; µ) ! R3 , where (l; µ) represents a cylindrical parametrization of the 3D surface. We built an initial cylindrical parametrization of the surface. We propose a new method to regularize such cylindrical surface. This method takes into account the information supplied by the disparity maps computed between pair of images to constraint the regularization of the set of 3D points. We propose a model based on an energy which is composed of two terms: an attachment term that minimizes the difference between the image coordinates and the disparity maps and a second term that enables a regularization by means of anisotropic diffusion. One interesting advantage of this approach is that we regularize the 3D surface by using a bi-dimensional minimization problem.
URI: http://hdl.handle.net/10553/11767
ISBN: 3-540-40217-9
ISSN: 0302-9743
Source: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 2652, p. 37-44
Rights: by-nc-nd
Appears in Collections:Actas de congresos
Thumbnail
Adobe PDF (302,27 kB)
Show full item record

Page view(s)

5
checked on Apr 4, 2020

Download(s)

9
checked on Apr 4, 2020

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.