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Abstract. In this paper we present a method for the regularization of
3D cylindrical surfaces. By a cylindrical surface we mean a 3D surface
that can be expressed as an application S(l, θ) → R3, where (l, θ) repre-
sents a cylindrical parametrization of the 3D surface. We built an initial
cylindrical parametrization of the surface. We propose a new method
to regularize such cylindrical surface. This method takes into account
the information supplied by the disparity maps computed between pair
of images to constraint the regularization of the set of 3D points. We
propose a model based on an energy which is composed of two terms:
an attachment term that minimizes the difference between the image
coordinates and the disparity maps and a second term that enables a
regularization by means of anisotropic diffusion. One interesting advan-
tage of this approach is that we regularize the 3D surface by using a
bi-dimensional minimization problem.

1 Introduction

This paper deals with the problem of 3D geometry reconstruction from multiple
2D views. Recently, a new accurate technique based on a variational approach
has been proposed in [4]. Using a level set approach, this technique optimizes a
3D surface by minimizing an energy that takes into account the regularity of the
set of points as well as the projection of the set of points on different images.

In this paper we propose a different approach which is also based on a varia-
tional formulation but only using a disparity estimation between images. We will
assume that the 3D surface we want to recover has a cylindrical geometry, that
is, it can be expressed as an application S(l, θ) → R3, where (l, θ) represents
a cylindrical parametrization of the 3D surface. Of course, this is an important
limitation in term of the surface geometry, but it simplifies in a strong way the
complexity of the problem and it can be applied in a lot of situations like for
instance, human face reconstruction as we will show in the experimental results.
We will also assume that the cameras are calibrated (see [3], [5] or [6]). Very ac-
curate techniques to estimate the disparity map in a stereo pair of images have
been proposed. To extend these techniques to the case of multiple views is not
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a trivial problem. The 3D geometry estimation that we propose can be divided
in the following steps:

– For every pair of consecutive images, we estimate a dense disparity map
using the accurate technique developed in [1]. We estimate such disparity
maps forward and backward. From these disparity maps we obtain a 3D
surface for every pair of stereoscopic images.

– Based on the camera configuration we estimate a 3D cylinder and we project
in such cylinder the 3D surfaces obtained in the previous step. From these
projections we estimate an initial cylindrical parametrization of the surface.
This cylindrical parametrization is based on the distance between the 3D
point and the cylinder axis. In fact, for each cylinder coordinates (l, θ) we
average such distance for all 3D points which are projected in (l, θ) .

– Typically, the recovered set of 3D points is noisy, because of errors in the
camera calibration process, errors in the disparity map estimations, etc.,
so some kind of regularization is needed. In this paper, we propose a new
variational model to smooth cylindrical surfaces. This regularization model
is based on the disparity estimations.

The regularization model we propose is based on a variational approach. We
start with an energy that has two terms, an attachment and a regularizing term.
The former minimizes the difference by respect to the disparity map computed
for every pair of stereoscopic images. This term is responsible for maintaining
the final 3D regularized point close to the information supported by the disparity
maps. The latter enables a regularization by preserving discontinuities on the
cylindrical function. The regularizing term is similar to the terms used in other
fields like stereoscopic reconstruction [1], optical flow estimation [2], etc.

Deriving this energy yields a PDE (Partial Differential Equation) that is then
embedded into a gradient descend method to look for the solution. We develop an
explicit numerical scheme based on finite differences to implement the method.

In Sect. 2 we introduce the cylindrical coordinate system necessary for the
representation of the cylindrical function and the relation with the projective
camera model. In Sect. 3 we study the model by proposing an energy deriving
it and embedding the resulting PDE into a gradient descend method. In Sect.
3.2 there is an explanation of the explicit numerical scheme. Finally in Sect. 4
we present the experimental results for the bust sequence.

2 The Cylinder Structure

2.1 The Cylindrical Coordinate System and the Projective Camera

Using the notation expressed in Fig. (1) we note by N̄1, N̄2 and N̄3 the orthogonal
axis of the coordinate system and by Q̄0 the origin of the system. N̄1 represents
the cylinder axis. The cylindrical coordinates are expressed by means of a list of
three candidates (l, θ, r) where l is the displacement on the cylinder axis, θ is an
angle (as it is outlined in Fig. (1)) and r is the distance from a 3D point to the
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Fig. 1. Cylindrical and cartesian coordinate systems

cylinder axis. A cylindrical surface S(l, θ) will be given by a cylindrical function
r(θ, l) in the following way :

S(l, θ) = Q̄0 + lN̄1 + r(l, θ)
(
cos θN̄2 + sin θN̄3

)
. (1)

With this relation we may transform a cylindrical function r (l, θ) into a
function in the cartesian coordinate system. So, to provide a cylinder surface
is equivalent to provide a cylinder function r(l, θ). We will see later that our
method make use of the disparity maps between pairs of stereoscopic images
to constraint the regularization of the cylindrical function. The disparity maps
are expressed in image coordinates associated to every camera. We assume the
projective model for the cameras. In our problem we have Nc different projective
cameras and every camera is represented by a projection matrix Pc of dimensions
3x4 that projects 3D points into the projection plane. In projective coordinates
these projections can be represented as follows:

m̃c(l, θ) = Pc (S(l, θ), 1)t
. (2)

2.2 Building the Cylindrical Function

We suppose that for every stereoscopic pair we have a 3D surface. Our first
problem is to transform the 3D surfaces into a unique cylindrical function. The
main steps for computing the cylindrical function are:

1. Compute the coordinate system by estimating Q̄0, N̄1, N̄2 and N̄3.
2. Adapt the resolution of the cylindrical image. The cylindrical function will

be represented through an image. This is what we call the cylindrical image.
The rows and columns of this image are given by the N̄1 axis and the angle,
θ, respectively.

3. Create the cylindrical function, r(θ, l). Once we have carried out the previous
steps we have to merge the information of all the 3D surfaces in one function.
We compute an average for all coincident 3D points projections in one pixel
in the cylinder coordinate system (l, θ).
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The first step is to estimate the position, Q̄0 and axis, N̄1, N̄2 and N̄3, of the
cylindrical coordinate system. We have supposed that the camera configuration
system is cylindrical in the sense that all the cameras are situated around the
scene and looking at the center. We also suppose that the focus of the cameras
are situated close to a common plane. Q̄0 is estimated as the average of the 3D
points of all surfaces. N̄1 is the cylindrical axis and is computed accordingly to
the configuration of the focuses, N̄2 is the unitary vector that points to the focus
of the first camera and N̄3 is orthogonal to the others.

In the second step we are concern with the problem of representing the cylin-
drical function through a bi-dimensional image. We have to compute the dimen-
sions of an image that will allocate the values of the 3D points in cylindrical
coordinates. To calculate the number of rows the lowest and highest 3D points
in the N̄1 component are computed. The difference between them defines the
size of the cylindrical axis. The number of columns are estimated knowing that
2 ·π · radius is the length for the cylinder. We adapt the value of radius in order
to obtain an image with regular pixels (same pixel height and width). This value
depends on the dimension of the image in the N̄1 axis. This image represents
the r(θ, l) function.

The last step consist of assigning a value to every pixel on the image. This
process is carried out by representing the 3D points in cylindrical coordinates
and computing an average for coincident points on a pixel. There may be some
locations where no 3D point is projected, so a post-processing to fill these pixels
is necessary. These are filled from the values of the surrounding pixels.

3 The Regularizing Method

3.1 Energy Minimization

The regularization of the cylindrical function r(l, θ) is equivalent to regularize
the cylindrical surface S(l, θ). We propose a variational formulation to look for
the regularized solution. This solution is the result of a minimization problem.
Our model is composed of two terms: the attachment term that uses the disparity
maps to constraint the process; and the regularizing term that is used to obtain
a smooth solution. This term is designed to regularize the surface by preserving
the discontinuities of the cylindrical function which are related to the varying
depth of the 3D surface.

The energy model proposed is

E(r) = β

(
N∑

c=1

∫ ∫ ∥∥m̄c+1 (l, θ)− m̄c (l, θ)− hc
+ (m̄c)

∥∥2
dldθ

+
N∑

c=1

∫ ∫ ∥∥m̄c (l, θ)− m̄c+1 (l, θ)− hc
− (m̄c+1)

∥∥2
dldθ

)

+α

∫ ∫
φ (‖∇r‖) dldθ . (3)
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m̄c+1 (l, θ) is the image coordinate for camera c + 1 denoted by (2) and

m̄c (l, θ) is the correspondent for camera c. Vectors h̄c
+/−(m̄c) =

(
u+/−(m̄c)
v+/−(m̄c)

)

represent the optical flow estimations for pixel m̄c on camera c. Sign + corre-
sponds to the optical flow from camera c to c + 1 and sign − to the optical flow
from camera c to camera c− 1.

After minimizing this energy we obtain the associated Euler–Lagrange equa-
tion that is given by the following PDE:

β ·
(

Nc∑
c=1

((
m̄c+1 − m̄c − h̄c

+(m̄c)
)t ·

(
∂m̄c+1

∂r
− ∂m̄c

∂r
− J h̄c

+

∂m̄c

∂r

))

+
Nc∑
c=1

((
m̄c − m̄c+1 − h̄c+1

− (m̄c+1)
)t ·

(
∂m̄c

∂r
− ∂m̄c+1

∂r
− J h̄c+1

−
∂m̄c+1

∂r

)))

−α · div
(

φ′ (‖∇r‖)
‖∇r‖ ∇r

)
= 0 (4)

where J h̄ = J
(

u(x, y)
v(x, y)

)
=

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

In order to search for the solution we implement a gradient descend method
in the way ∂r

∂t = −∂E(r)
∂r . The divergence term is well known and acts like a

diffusion scheme. If we expand the divergence expression we obtain

div
(

φ′ (‖∇r‖)
‖∇r‖ ∇r

)
=

φ′ (‖∇r‖)
‖∇r‖ rξξ + φ′′ (‖∇r‖) rηη (5)

where η = ∇r
‖∇r‖ and ξ = η⊥ are the unitary vectors in the directions parallel

and perpendicular to the gradient, respectively.
Playing with function φ (s) it is possible to achieve an anisotropic diffusion

at contours. The first in proposing this kind of diffusion equation were Perona
and Malik [7] in where they introduced a decreasing function to avoid diffusion
at contours.

3.2 Numerical Scheme

In this section we are going to see how to implement an explicit numerical
scheme for this method. We derive ∂m̄

∂r analytically from (2). Regarding (5) the
divergence is divided in two terms and the values for both of them are given by
the following expressions:

rξξ =
rxxr2

y − 2rxryrxy + ryyr2
x

r2
x + r2

y

, rηη =
ryyr2

y + 2rxryrxy + rxxr2
x

r2
x + r2

y

. (6)



6 Luis Alvarez, Carmelo Cuenca and Javier Sánchez

Fig. 2. Bust configuration: This figure shows the 3D reconstructed bust and the dis-
tribution of the projection planes corresponding to the 47 cameras

The first and second derivates on x and y and the derivates of the components
of the optical flow, ∂u

∂x , ∂u
∂y , ∂v

∂x , ∂v
∂y and ∂u

∂x , have been approximated by finite
differences.

The final numerical scheme is implemented by means of an explicit scheme
in the following way:

rt+1 = rt + dt ·


α (rξξ + g (‖∇r‖) rηη)− β

(
Nc∑
c=1

((
m̄c − m̄c+1 − h̄c+1

− (m̄c+1)
)t

·
(

∂m̄c

∂r
− ∂m̄c+1

∂r
− J h̄c+1

−
∂m̄c+1

∂r

))
+

Nc∑
c=1

((
m̄c+1 − m̄c − h̄c

+(m̄c)
)t

·
(

∂m̄c+1

∂r
− ∂m̄c

∂r
− J h̄c

+

∂m̄c

∂r

) ) 



 . (7)

Function g (s) is a decreasing function that disables isotropic diffusion for big
values of the gradient.

4 Experimental Results

In this section we show the results of regularizing a bust sequence. In this case
the sequence is composed of 47 images taken around a bust. Figure (2) shows the
configuration of this sequence with the projection planes of the cameras. This is
a close sequence in where the first and last images are correlatives.

In Fig. (4) we may see the original Bust reconstruction and a regularized
version for α = 0, 1 and s = 0.1.

From Fig. (5) we may appreciate several regularizations for α = 3, 0 and
different values of s. The β parameter is much smaller and is used to normalize
the variation between the two terms. In these experiences β = 10−4.
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Fig. 3. The left image represents the texture of the Bust sequence projected on a
cylindrical image. The right image is the cylindrical function represented in gray levels
(the white color is associated to the highest values)

Fig. 4. Left two images: Front and profile views of the Bust reconstruction. Right two
images: Front and profile views of a 3D regularization for the Bust sequence using
α = 0, 1 and s = 0.1

5 Conclusions

In this paper we have presented a novel and simple method for the representation
and regularization of cylindrical surfaces. This method is ideally suited for convex
surfaces and also be appropriated for surfaces that have not deep clefts. We have
taken advantage of the simplicity of cylindrical coordinates to represent the set
of 3D points. Once the cylindrical function is built the problem of regularizing
the set of 3D points is reduced to the problem of regularizing a bi-dimensional
function.

We have established an energy in a traditional attachment–regularizing cou-
ple of terms. From this energy we have derived a diffusion-reaction PDE. We
have shown in the experiments that varying the α parameter results in a more
regular set of points and varying the λ parameter implies a more regular set of
points by preserving the cylindrical function discontinuities as we have expected
from the results obtained in other fields. The use of α and λ parameters are
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Fig. 5. Several views of different 3D regularizations for the Bust sequence. Left two
images: α = 3, 0 and s = 0, 5; Right two images: α = 3, 0 and s = 1, 0

simple. α refers to the smoothness of the final set of points and λ refers to the
way the regularization is carried out at the contours.
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