Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/11754
Título: Reliable estimation of dense optical flow fields with large displacements
Autores/as: Alvarez, Luis 
Weickert, Joachim
Sánchez, Javier 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Palabras clave: Image sequences
Optical flow
Diferential methods
Anisotropic difusion
Linear scale- space, et al.
Fecha de publicación: 2000
Publicación seriada: International Journal of Computer Vision 
Resumen: In this paper we show that a classic optical flow technique by Nagel and Enkelmann can be regarded as an early anisotropic diffusion method with a diffusion tensor. We introduce three improvements into the model formulation that avoid inconsistencies caused by centering the brightness term and the smoothness term in different images use a linear scale-space focusing strategy from coarse to fine scales for avoiding convergence to physically irrelevant local minima, and create an energy functional that is invariant under linear brightness changes.  Applying a gradient descent method to the resulting energy functional leads to a system of diffusion-reaction equations. We prove that this system has a unique solution under realistic assumptions on the initial data, and we present an efficient linear implicit numerical scheme in detail. Our method creates flow fields with 100% density over the entire image domain, it is robust under a large range of parameter variations, and it can recover displacement fields that are far beyond the typical one-pixel limits which are characteristic for many differential methods for determining optical flow. We show that it performs better than the classic optical flow methods with 100%  density that are evaluated by Barron et al. (1994). Our software is available from the Internet.
URI: http://hdl.handle.net/10553/11754
ISSN: 0920-5691
DOI: 10.1023/A:1008170101536
Fuente: International Journal of Computer Vision [ISSN 0920-5691], v. 39, p. 41-56
Derechos: by-nc-nd
Colección:Artículos
miniatura
Adobe PDF (451,67 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.