Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/116094
Campo DC Valoridioma
dc.contributor.authorGazda, Matejen_US
dc.contributor.authorHires, Mátéen_US
dc.contributor.authorDrotár, Peteren_US
dc.date.accessioned2022-07-05T08:41:45Z-
dc.date.available2022-07-05T08:41:45Z-
dc.date.issued2022en_US
dc.identifier.urihttp://hdl.handle.net/10553/116094-
dc.description.abstractThis paper proposes the ensemble of deep convolutional neural networks for diagnosing Parkinson’s disease from offline handwriting. The advantage of the offline approach lies in the fact that handwriting acquisition can be performed without any specialized equipment by using only a smartphone camera. The convolutional neural networks ensemble relies on pre-trained networks where the diversity is achieved through the multiple-fine-tuning of individual networks. The experimental results on two handwriting datasets showed that the proposed approach currently provides the highest classification accuracy compared to other strategies for diagnosing Parkinson’s disease based on offline handwriting.en_US
dc.languageengen_US
dc.sourceThe 20th Conference of the International Graphonomics Society (IGS2021). Conference proceedings for short papers not published in the LNCS – Springeren_US
dc.subject320711 Neuropatologíaen_US
dc.subject570110 Patología y corrección del lenguajeen_US
dc.titleEnsemble of convolutional neural networks for Parkinson’s disease diagnosis from offline handwritingen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference20th Conference of the International Graphonomics Society (IGS 2021)en_US
dc.relation.volume5en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate07-06-2022-
crisitem.event.eventsenddate09-06-2022-
Colección:Actas de congresos
Adobe PDF (852,13 kB)
Vista resumida

Visitas

189
actualizado el 18-may-2024

Descargas

150
actualizado el 18-may-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.