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Letná 9,
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Abstract. This paper proposes the ensemble of deep convolutional neural networks for diagnosing
Parkinson’s disease from offline handwriting. The advantage of the offline approach lies in the fact
that handwriting acquisition can be performed without any specialized equipment by using only a
smartphone camera. The convolutional neural networks ensemble relies on pre-trained networks where
the diversity is achieved through the multiple-fine-tuning of individual networks. The experimental
results on two handwriting datasets showed that the proposed approach currently provides the
highest classification accuracy compared to other strategies for diagnosing Parkinson’s disease based
on offline handwriting

1. Introduction
There are two strong trends for intelligent engineering systems for next-generation medicine: diagnos-
tic decision support systems and non-invasive monitoring. Non-invasive monitoring and examination
are frequently more cost-effective than invasive procedures and require less medical professional effort.
Diagnostic decision support systems help to make more objective, knowledge-based decisions. Current
technology provides a wide plethora of data that can serve as an input to decision support systems. These
can vary from different medical images (such as MRI, retina images, etc.) through electroencephalogram
electrocardiogram to speech or handwriting.
Handwriting is a skill that is acquired by learning and practicing. It is the result of several sequential
biological processes where the visual information is processed, analyzed, and passed. The main role lies in
the motor and cognitive functions of the brain that are responsible for execution. The ability to maintain
the constant form of handwriting can be disturbed or lost due to many factors such as aging, comfort
during writing, or the writing velocity. Besides these, the injury, disease, or disability can very significantly
affect handwriting. As such, handwriting may reflect some disturbances in cognitive or motor functions.
This is why handwriting was established as one of the early indicators of Parkinson’s disease (PD) [15].
Historically, result of handwriting is represented as a trace on the paper. However, the latest advances
in technology allow handwriting to be acquired as a pen tip movement in three dimensions (x, y, and
z-captured as pressure). The ability to acquire and process handwriting ignited considerable research
attention on handwriting. Initial works of Teulings, Stelmach, and Gemmert [7], [16] showed the PD
results in statistically significant deterioration of handwriting captured by changes in size and speed
of handwriting. The following works introduced many sophisticated features that were able to capture
different hidden aspects of handwriting. The most recent include, for example, cepstral and spectral
handwriting features [11]. We do not provide an exhaustive review of the various proposed features, but
the interested reader can find more details in [9], [17] and references therein.
In recent years, methodological and technological advances revealed the potential of convolutional neural
networks (CNN) in image processing, and CNN penetrated many areas of medical image processing.
Therefore, it was only a natural extension to apply CNN for processing the handwriting data. The input
of the CNN is an image, so in this case, one has to omit all other parameters that are available in online
processing, such as handwriting coordinates, timestamp, pen tilt, and pressure. Even though initial works
reported classification accuracy far beyond the capabilities of the methods utilizing online handwriting
methods [10], [12] recent results indicate that there is enough of discriminative information also in offline
handwriting [1], [6].

2. Proposed approach
We decided to apply the majority voting ensemble method of five convolutional neural networks trained
independently.

2.1 Convolutional neural networks
Convolutional Neural Networks achieved significant breakthroughs when used with data in grid format,
such as time-series or 2D/3D images. One of the most recognized network is VGG [14] that won ImageNet



2012 challenge [2]. Since both datasets PaHaW and NewHandPD are relatively small, we chose to improve
the generability of the model with transfer learning.
Transfer learning (TL) is a method to transfer the knowledge obtained on one domain to another domain.
With respect to the CNN, it means to pretrain the model on one task and then reuse the model’s weights
on the second task. Reused weights can be either frozen, thus not trainable, or not frozen, therefore
affected during the fine-tuning process. The general assumption to make transfer learning work is that the
domains should be relatively semantically similar. However, a similarity metric between the two domains
has not been defined yet.
We divide TL into two categories. TL (a) without mediator dataset, and (b) with mediator dataset.
For models based on traditional TL without mediator dataset we train the network by end-to-end approach
on large scale source dataset S and then fine-tune network on the target task – diagnostics of Parkinson’s
disease on PaHaW/NewHandPD datasets. We denote such networks as CNN S .
We apply an additional intermediate step for models based on TL with mediator dataset. First, the
network is trained on a large source dataset S, then fine-tuned on a dataset A, closer to the final dataset,
and finally fine-tuned to the target task. We denote such network as CNN S,A.
The assumption is that the mediator can close the semantic gap between the source and target datasets.
Mediator dataset is helpful if the source dataset is big but not semantically close to the target task, and
the mediator itself is not big enough to be trained from scratch.

2.2 Ensemble of multiple-fine-tuned CNN
The main aim of an ensemble classifier is to build a more robust classifier by combining several base
classifiers. Naturally, base classifiers are required to provide some form of diversity to be beneficial for the
ensemble. Diversity can be ensured in different ways.
The simplest option to guarantee diversity is to employ different base classifiers, such as Support Vector
Machines and CNNs. The second option is to use a classifier with the same structure but trained on
different data.
In this paper, we utilize five CNNs as base classifiers. The diversity is derived from different training
processes, particularly using different datasets as mediators or not using mediator at all. The whole process
is depicted in Figure 1. The training process of all 5 CNNs is presented in the second column.

Fig. 1. Concept of the proposed decision support system incorporating MFT CNNs and ensemble voting.

3. Results
The proposed ensemble approach was evaluated on two publicly available datasets: PaHaW [5] and
NewHandPD [13]. The PaHaW dataset is a compilation of eight different handwriting tasks, including
Archimedean spiral, letters, syllables words, and sentence. We avoided using the sentence task since it is



Table 1
Prediction accuracy of different networks on all evaluated handwriting tasks from NewHandPD and PaHaW
datasets.

handwriting task CNN I CNN I,U CNN I,M CNNM CNNM,U CNNCE

spiral (HandPD) 88.9± 5.9 92± 4 89.6± 8 81.3± 8.4 82.52± 8.1 96.3± 4.59
meander (HandPD) 89± 10 92.3± 6.5 92.7± 7.1 89± 8.5 89± 7.5 94.38± 8.48
spiral 80± 10 81.6± 8.6 83± 8.6 79.5± 6 85.3± 4.7 88.54± 3.1
l 64.5± 6.3 67.6± 6.4 66.9± 6.2 65± 3.2 65± 4.6 71.25± 10.16
le 73.8± 7.9 71.3± 9.5 71.3± 8.3 65.1± 7.1 66.3± 3.4 78.8± 11.8
les 70.7± 4 69.9± 6.4 70.8± 4.1 68.4± 7.1 68.6± 2.3 72.5± 11
lektorka 72.2± 6.2 74.7± 4.2 73.4± 7.8 68.4± 6.2 72.2± 8.3 81± 4.88
porovnat 68.1± 8.3 67.8± 10 68.7± 10.6 64.7± 6.16 68.5± 8 77.26± 3.94
nepopadnout 75.8± 4.2 78.4± 6 78.5± 3.7 72.1± 6.2 77.4± 5.3 91.88± 5.02

Table 2
Comparison of prediction accuracy of the proposed method and other state-of-the art approaches from literature.

handwriting task Diaz [4] Diaz [3] Moetesum [10] Pereira [12] Gazda [6] This work

spiral (HandPD) 94.44 - - 76.26 92.7± 5.8 96.3± 4.59
meander (HandPD) 91.11 - - 80.75 94.7± 7 94.38± 8.48
spiral 93.75 75 76± 8 - 85.8± 7 88.54± 3.1
l 96.25 64.16 62± 8 - 68± 4 71.25± 10.16
le 88.75 58.33 57± 9 - 74.7± 6.9 78.8± 11.8
les 90 71.67 60± 8 - 72.7± 4.7 72.5± 11
lektorka 93.75 75.41 60± 7 - 76.1± 2.8 81± 4.88
porovnat 91.25 63.75 51± 9 - 76± 6 77.26± 3.94
nepopadnout 92.5 70 68± 7 - 78.5± 9.4 91.88± 5.02

different from a single word and has more complex structure. The NewHandPD dataset contains two tasks:
meander drawing and Archimedean spiral. For the case of PaHaw dataset the handwriting is captured in
form of x and y coordinates that were used to render images. If task contains multiple repetitions, every
repetition is considered as single image and was used for training and testing as single sample.

As the CNN backbone, we utilize VGG architecture that provides competitive performance and proved
itself in our previous experiments. We use stochastic gradient descend (SGD) for pre-training and training
on mediator dataset and Adadelta for training on the target task. The learning rate was set up to value
0.01, and we used 300 epochs. All images were resized to 224× 224 pixels to match ImageNet size.

Altogether, we trained five networks. Two networks, CNNI , and CNNM , were trained on large datasets
ImageNet and MNIST. Then, three networks were trained through multiple-fine-tuning procedure intro-
duced in [6]. Networks CNNI,M and CNNI,U were first trained on ImageNet and then further trained
on MNIST, and UJIpenchars2 [8], respectively. CNNM,U was pretrained on MNIST and then fine-tuned
using the smaller UJIpenchars2 dataset. Finally, all CNNs were fine-tuned on target datasets (PaHaW
or NewHandPD). We used only MNIST for training network from scratch since it is much bigger than
UJIpenchars2.

The numerical results are presented in Table 1. Stratified five-fold cross-validation was used while ensuring
that handwriting samples from one subject were used only in the training dataset or testing dataset, and
not in both. The results of individual networks are based on our previous experiments in [6]. In this work
we extend the previous results by building the ensemble from all five networks, denoted as CNNCE . This
shows a notable boost in the performance of the ensemble classifier.

We compare the performance of the CNNCE ensemble with other state-of-the art results. The comparison
is depicted in Table 2. We included in the table the very recent work of [4] that achieves probably the
highest overall results in prediction of PD from handwriting. However, it should be noted that this method
takes advantage also of kinematic features, such as velocity and pressure, not only imagery data. Even
then, we can see that the proposed CNN ensemble outperformed the Diaz’s [4] approach on NewHandPD
dataset and yielded very competitive results for word nepopadnout. The three referenced works [10], [12],
[6] provide fair comparison since in this case only imagery data are used in the input. As can be seen,
the ensemble proposed in this study outperforms the three competitive approaches on both considered
datasets.



4. Conclusions
In this work, we presented the ensemble of CNNs for diagnosing PD from handwriting. To avoid prohibitive
computational cost when training the CNN, we utilized the multiple-fine-tuning approach that uses
mediator dataset to close the gap between source tasks, such as the classification of natural images and
the target task. The mediator dataset also allows to create diversity and to build the ensemble of the
CNNs. The proposed approach provides competitive results that even outperform the methods based
on the online handwriting on some tasks. The CNNs use only imagery data on the input and no other
modalities. This opens new possibilities to bring computerized handwriting analysis closer to real use. The
image can be acquired by a high-resolution smartphone camera and then evaluated by CNNs. Naturally,
the image acquired by camera can be of different resolution, with possible shadows and some noise, so
further experiments need to be performed. Additionally, it is clear that this approach can not provide a
complex view on handwriting as the online processing since it does not consider handwriting dynamics
and kinematics but can capture significantly more data and screen a larger part of the population.
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Analysis of in-air movement in handwriting: A novel marker for parkinson’s disease. Computer methods and
programs in biomedicine, 117(3):405–411, 2014.
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