Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/115492
Título: A phenomenological computational model of the evoked action potential fitted to human cochlear implant responses
Autores/as: Ramos De Miguel, Ángel 
Escobar Sánchez, José M 
Greiner Sánchez, David Juan 
Benítez Díaz, Domingo Juan 
Rodríguez Barrera, Eduardo Miguel 
Oliver Serra, Albert 
Hernandez Gil, Marcos Javier 
Ramos Macías, Ángel Manuel 
Coordinadores/as, Directores/as o Editores/as: Nogueira, Waldo
Clasificación UNESCO: 33 Ciencias tecnológicas
Fecha de publicación: 2022
Publicación seriada: PLoS Computational Biology 
Resumen: There is a growing interest in biomedical engineering in developing procedures that provide accurate simulations of the neural response to electrical stimulus produced by implants. Moreover, recent research focuses on models that take into account individual patient characteristics. We present a phenomenological computational model that is customized with the patient’s data provided by the electrically evoked compound action potential (ECAP) for simulating the neural response to electrical stimulus produced by the electrodes of cochlear implants (CIs). The model links the input currents of the electrodes to the simulated ECAP. Potentials and currents are calculated by solving the quasi-static approximation of the Maxwell equations with the finite element method (FEM). In ECAPs recording, an active electrode generates a current that elicits action potentials in the surrounding auditory nerve fibers (ANFs). The sum of these action potentials is registered by other nearby electrode. Our computational model emulates this phenomenon introducing a set of line current sources replacing the ANFs by a set of virtual neurons (VNs). To fit the ECAP amplitudes we assign a suitable weight to each VN related with the probability of an ANF to be excited. This probability is expressed by a cumulative beta distribution parameterized by two shape parameters that are calculated by means of a differential evolution algorithm (DE). Being the weights function of the current density, any change in the design of the CI affecting the current density produces changes in the weights and, therefore, in the simulated ECAP, which confers to our model a predictive capacity. The results of the validation with ECAP data from two patients are presented, achieving a satisfactory fit of the experimental data with those provided by the proposed computational model.
URI: http://hdl.handle.net/10553/115492
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1010134
Fuente: PLoS Computational Biology [ISSN 1553-7358]
Colección:Artículos
Adobe PDF (4,01 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.