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Abstract

There is a growing interest in biomedical engineering in developing procedures that provide

accurate simulations of the neural response to electrical stimulus produced by implants.

Moreover, recent research focuses on models that take into account individual patient

characteristics.

We present a phenomenological computational model that is customized with the

patient’s data provided by the electrically evoked compound action potential (ECAP) for sim-

ulating the neural response to electrical stimulus produced by the electrodes of cochlear

implants (CIs). The model links the input currents of the electrodes to the simulated ECAP.

Potentials and currents are calculated by solving the quasi-static approximation of the

Maxwell equations with the finite element method (FEM). In ECAPs recording, an active

electrode generates a current that elicits action potentials in the surrounding auditory nerve

fibers (ANFs). The sum of these action potentials is registered by other nearby electrode.

Our computational model emulates this phenomenon introducing a set of line current

sources replacing the ANFs by a set of virtual neurons (VNs). To fit the ECAP amplitudes

we assign a suitable weight to each VN related with the probability of an ANF to be excited.

This probability is expressed by a cumulative beta distribution parameterized by two shape

parameters that are calculated by means of a differential evolution algorithm (DE). Being the

weights function of the current density, any change in the design of the CI affecting the cur-

rent density produces changes in the weights and, therefore, in the simulated ECAP, which

confers to our model a predictive capacity.

The results of the validation with ECAP data from two patients are presented, achieving a

satisfactory fit of the experimental data with those provided by the proposed computational

model.
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Author summary

The cochlea, found in the inner ear, is the organ where the sound is transformed into an

electrical pulse to be transmitted by the neurons to the auditory cortex. Hearing loss can

be caused by damage to the hair cells, in which case neuronal excitation is impaired. CIs

are devices that replace the normal function of the impaired/damaged Organ of Corti.

Computational models allow a better understanding of the mechanisms involved in the

electrical stimulation of the auditory nerve. These models can help biomedical engineers

to develop new CIs with improved auditory performance. One important aspect of our

model is its customization with the patient’s data provided by the recording of the evoked

compound action potential (the synchronous firing of a population of electrically stimu-

lated auditory nerve fibers). This phenomenological model allows us to predict the regis-

ters of neural stimulation produced when the auditory nerve is stimulated with the CIs.

We have validated the proposed model with real data obtained from two patients with

CIs.

Introduction

The best-known and most successful implantable neurostimulator or neuroprosthesis is the

CI, designed to provide a sense of sound to an adult or child with severe to profound hearing

loss [1]. CI is composed of a microphone, a speech processor, a transmitter and receiver/stim-

ulator, and an electrode array, which is inserted in the cochlea. A recent survey of the state-of-

the-art of CIs could be found in [2].

In the past two decades, assessment of CI functionality is clinically recognized to be widely

used through the electrically compound action potential (ECAP) (see for example [3]), which

represents the synchronous firing of a population of electrically stimulated ANF. A clinical

applicability of ECAPs is to obtain the threshold current to evoke acoustical perception and

the maximum comfortable loudness levels before producing any kind of discomfort [4]. A

recent overview of recording methodologies, response characteristics and potential applica-

tions of the ECAP is published in [5], highlighting the importance of this measure in CI clini-

cal practice.

A crucially important aspect in neuronal modeling is to know the spread of excitation of

nerve activity that is excited when it is subjected to neuronal stimulation produced by a CI. It

is essential to predict the activation of nerve fibers out of the target region of each electrode of

the CI (crosstalk) [6–8] and to design electrodes that improve the focalization [9–12]. Also, it

could be useful to predict dead regions of the cochlea [13, 14]. Specifically, we want to know

the relationship between the current applied by each electrode and the set of neurons of the

auditory nerve that are excited.

The complexity of biological systems makes it impossible to build a deterministic model

that provides a precise response to an external stimulus. As it is pointed in [15], “Most models

of neural response to electrical stimulation, such as the Hodgkin–Huxley equations, are deter-

ministic, despite significant physiological evidence for the existence of stochastic activity. For

instance, the range of discharge probabilities measured in response to single electrical pulses

cannot be explained at all by deterministic models.” As far as we know, the current computa-

tional cochlear models have a deterministic approach, that is, they try to accurately reproduce

all the physical and biological processes involved in cochlear stimulation [6, 16–23]. This

approach would be the appropriate if we knew precisely all the variables (conductivities of the

media, patient-specific cochlear geometry, neuron positions in the nerve and its synapses
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positions of the electrodes, healthy state of the auditory nerve, possible fibrosis on the elec-

trode, etc.) implicated in the problem. In addition, it would be needed to know the precise

excitation mechanisms of the neurons when they are stimulated with extracellular electrodes.

However, at present these variables and mechanisms are not accurately known to faithfully

reproduce the electrical behavior of the cochlea. In contrast, our work approaches the problem

“phenomenologically”, that is, adjusting the model to reproduce the clinical data.

Note that it is not currently possible to reproduce the clinical ECAP with a “deterministic”

model due to, among other things, the great variability of clinical ECAP. The novelty of the

model is the phenomenological approach of fitting simulated ECAPs by using weights that are

obtained from a probability distribution.

Among the most relevant data to fit the electrical parameters of a computational model of a

cochlea are the impedance matrix and the registers of the ECAP. The transimpedance matrix

allows us to fit the electrical behavior of the model. The ECAP is used to conform the model to

reproduce the patient’s neural response.

There are a lot of works dealing with the modelization of CIs. For example, in [6, 18–21, 24]

the authors develop a FEM volume conduction model (VC) to predict the electrical fields

inside a stimulated cochlea and to analyze the neural response of the ANFs. In [25] it is ana-

lyzed the effect of the position of the electrodes and the conductivities of different tissues on

the potential distribution. The work of Hanekom [26] presents an extensive review of the 3D

modelling of CI, and its applications.

Currently, there are different computational models of CIs that have been fitted using clini-

cal data, such as transimpedances, cochlear dimensions, electrode locations, and loudness and

pitch perception [10, 25, 27, 28], and speech understanding [29]. Additionally, there are other

models that simulate ECAPs responses [14, 16, 22, 30–32] as the one proposed in this work. In

[30], ECAP is modeled using transfer functions that multiply the temporal derivatives of the

membrane potential and are calculated using FEM. Moreover, [22] proposes a circuit model

whose parameters are calculated by FEM.

The amplitudes of the ECAPs can vary significantly from one patient to another. The main

difference between the above mentioned models and ours is the ability of our model to fit the

ECAPs of a specific patient. Another fundamental difference is that this fitting is performed

using weights that depend on the current densities. This dependency is what gives our model a

predictive character. For example, a variation in the design of the CI could lead to a variation

in the current densities that reach the neurons and, therefore, a change in the response of the

model. The weights are calculated using a computational intelligence optimization method

(evolutionary algorithm).

The aim of our computational model is to reproduce the clinical ECAP generated by the

auditory nerve fibers (ANFs) when they are stimulated by a CI.

Method

Our model fits the clinical data of a specific patient. The prototype consists of a set of line

sources, the virtual neurons (VNs), propagating the membrane currents given by Hodgkin-

Huxley-type (H-H) models, (see e.g., [33–35]). The extracellular potential generated by the VN

is calculated by FEM. Each VN contributes with a suitable weight to the simulated potential.

The weights are assessed using a cumulative beta distribution characterized by two shape

parameters. These parameters are chosen to fit the model to ECAP of the patient. The number

of VNs must be large enough to determine, with sufficient precision, the extent of the auditory

nerve stimulated around the active electrode. The fitting of the model to the clinical data is

done using a differential evolution algorithm. As a result, we obtain a customized model of the
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neural response produced by the electric stimulation of the CI. The electrodes are stimulated

in monopolar mode.

The density of real neurons in the auditory nerve is far greater than the density of VNs in

our computational model, therefore, each VN represents a large number of real neurons. The

weight of a VN can be understood as the number of real neurons, represented by each VN,

that are effectively activated.

In ECAP recording, an active electrode Es produces a current stimulus that elicits action

potentials in the surrounding ANFs. These action potentials are registered by the recording

electrode Er. Our model establishes a connection between the current injected by Es and the

potential registered by Er. Our model connects the stimulation current at Es with the

computed ECAP, the potential generated by the VN and registered at Er. The procedure

involves two types of FEM computations and a parameter adjustment by using differential

evolution (DE):

• Electrode mode: Finite Element computation of current densities at the VNs: A 3D FEM

model is constructed to calculate the electrostatic potential and the currents produced by the

active electrode Es. This potential determines the current densities at the VNs.

• Neuron mode: Finite Element computation of electric potential at Er: The FEM model is

similar to the previous one, but in this case the sources are the VNs. That is, line sources

propagating the membrane currents given by Hodgkin–Huxley-type models.

The main stages of the computational model are shown in Fig 1.

Ethics statement

The ethics committee of the Complejo Hospitalario Universitario Insular Materno Infantil

approved the study prior to the data collection process. All patients agrees to participate in the

study by signing the informed consent.

FEM model

Domain description. Our study is focused on the small region around the stimulating

electrode. For that reason, it is not essential to construct a complete spiral-shaped representa-

tion of the cochlea. Nevertheless, as each tissue has a different conductivity, it is important that

the model represents correctly the different structures that conform the cochlea.

The cochlear model is delimited by a 20 mm radius sphere containing a medium whose

conductivity, σext, is chosen to fit the values of the transimpedances of the model to the ones

provided by clinical data, thus guaranteeing a reasonable electrical behavior of our simplified

model.

Fig 1. The three main stages of the computational model.

https://doi.org/10.1371/journal.pcbi.1010134.g001
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The transimpedance matrix is obtained by measuring the potential profile recorded along

all contacts when a single contact is stimulated in monopolar mode. The element Zij of the

transimpedance matrix is given by the ratio Vi/Ij, where Vi is the voltage at the electrode i
respect to the reference electrode (ground) and Ij is the current delivered by the stimulating

electrode j. The transimpedance matrix was recorded from a specific patient using the follow-

ing configuration of the Custom Sound Evoke Potentials software from Cochlear (Cochlear

Ltd. Sydney, Australia). A biphasic stimulus with a phase width of 25 μs, an interphase gap

width of 8 μs and a frame period of 122 μs was set. The recording time was set at the end of the

first phase. The stimulation current level was 0.636 mA. The ball electrode (MP1) was used as

reference in the stimulation circuit and the implant case (MP2) as reference in the recording

circuit. The neural responses were carried out with Custom Sound Evoke Potential Software

tool (version 5.2).

The simulated impedances depend on the conductivity of the medium, so a change in σext
causes a variation in the computed values of Zij. Our objective is to determine the value of σext
that adjusts the simulated impedances to the real ones.

Our computational model represents a section of the cochlea with a total length of 9 mm.

In this case, we focus on the basal portion of the cochlea selecting the first six values Zpatient =

{Z11, Z21, . . ., Z61} of transimpedance matrix, where the active electrode, j = 1, is the most basal

electrode. The values of these impedances are Zpatient = {2922.99, 870.15, 785.55, 700.95,

647.99, 616.35} O. We could also have chosen any other active electrode for our adjustment

with a similar result. The simulated values of the these impedances, with σext = 0.3 S m−1, are

Zsimulated = {1913.7, 851.41, 736.15, 696.59, 675.74, 662.37} O, taking the stimulating electrode,

Es, as the central one.

The reference electrode is placed close to the boundary of the delimiting sphere and its

radius is r = 0.5 mm.

The computational model of the cochlea has been generated by histological data from tem-

poral bone shown in Fig 2. The histological technique used is described in reference [36].

Fig 3A shows the straight section of the cochlea, the VNs and the electrode array used in

this work. The mesh of this geometry is shown in Fig 3B. The sphere delimiting the domain is

not represented in this figure.

The computational model contains 11 electrodes. They are embedded in a silicone carrier,

that is a good electrical insulator, so the current inside the carrier is negligible and it can be

removed from the domain. In this case the surface of the silicone constitutes the internal

boundary of the domain and it is considered as an isolating boundary. Thus, the boundary of

the domain O is formed by an exterior boundary, the sphere, @Oext, and the interior boundary,

@Oint, that is, @O = @Oext [ @Oint.

The conductivities of the different tissues considered in this work are: σendolymph = 1.67 S m−1,

σperilymph = 1.42 S m−1, σauditorynerve = 0.3 S m−1, σorgan of corti = 0.012 S m−1, σmodiolar wall bone =

0.2 S m−1 and σext = 0.3 S m−1. A review of the resistivities given by some authors is shown in

appendix E of [37]. Additionally, a detailed study of impedances of the cochlear structures can

be found in [38].

The number of VNs of our model is N = 43 and they are separated by 0.21 mm from each

other.

The radius of the electrode array is 0.3 mm, the dimensions of the electrodes are 0.7

mm × 0.3 mm and the inter-electrode distance is 0.7 mm. This design is based on the CI512

electrode array from Cochlear (Cochlear Ltd. Sydney, Australia). We have used Comsol Multi-

physics 5.6 with quadratic tetrahedral elements for FEM calculations. The number of tetrahe-

dral elements of the complete domain is 866 309, the average quality (mean ratio) is 0.735 and

the minimum element quality is 0.043. The number of degrees of freedom is 1171 692.
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It is important to highlight that the size of the elements at the VNs must be small enough to

accurately reproduce the potential abruptly fluctuating in time and space. The mesh around

the VNs has been refined 3 times, giving rise to a mesh with edges of 0.018 mm at the VNs.

Formulation of the problem. Although we are dealing with a dynamic problem, the

involved frequencies are very low. The stimulus rate of CI is around 1 kHz and the conduction

velocity of the ANF is around 15 m/s [39, 40]. Therefore, the problem can be solved by using a

steady current approach [41]. The potential ϕ is given by

r � sr� ¼ � S; in O ð1Þ

where σ is the conductivity and S is the volume current source (see for example [42]). This

approach, widely used, is known as the volume conduction model. Here, O is the domain

formed by the cochlea and the surrounding sphere and it is constituted by different structures

characterized by their conductivities σi, that we assume to be constant. The current density in

each structure is given by J = σiE, with E = −rϕ.

The source depends on whether the FEM is actuating as electrode or neuron mode.

Electrode mode:

The active electrode Es is a surface delivering a net current I0. As Es is part of the inner

boundary, it is modeled as a Neumann boundary condition and the source S = 0 is null. The

other electrodes are considered as floating potentials.

Fig 2. A section of the cochlea. This figure displays an histological section of the cochlea for light microscope of a

fresh temporal bone using the paraffin technique. The histological section was performed parallel to the modiolar axis.

Full view of the histology section of the cochlea (A). Zoom view of the region of interest of the cochlea (B). Geometry

generated based on histology image (C).

https://doi.org/10.1371/journal.pcbi.1010134.g002
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Although in an ECAP recording the input current takes several values, it is not necessary to

solve a FEM problem for each current. The linearity of the problem allows us to accomplish a

unique FEM simulation for a given I0. Thus, if Ik = ckI0 is the input current at Es and ck is the

proportionality constant between both currents, the solution of Eq (1) for Ik is ϕ(Ik) = ckϕ(I0),

being ϕ(I0) the solutions of (1) for I0. The currents considered here are the amplitudes of the

stimulus pulse of the CI, so the problem is strictly steady.

Neuron mode:

In this case, we can consider each VN as a line current source with a spatio-temporal

dependence given by λ(t, s) = λ(t − v−1 s), where s is the arc length of VN and v is the conduc-

tion velocity in the ANF. The line current density λ(t) is inferred from the Hodgking-Huxley

model for an ANF from [35]. The determination of λ(t − v−1 s) will be detailed in a subsection

below. The line current source is given by

Sðx; y; z; tÞ ¼
Z

C
lðt; sÞdðx � XðsÞÞdðy � YðsÞÞdðz � ZðsÞÞds ð2Þ

Fig 3. Electrode array and virtual neurons. Straight section of the cochlea containing the half banded electrode array

and the virtual neurons. The stimulating electrode is shown in green and the virtual neurons are shown in red (A).

Surface mesh with a refinement around the VN (B).

https://doi.org/10.1371/journal.pcbi.1010134.g003
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where C is the parametric curve (X(s), Y(s), Z(s)) describing the VN and s the arc length. Each

VN is represented by a source Sn(x, y, z, t) with a line current λn(t, s).

Boundary conditions

Active electrode. The active electrode Es is implemented as the Neumann boundary con-

dition

J � n ¼ � s
@�

@n
¼
I0
A

on Es; ð3Þ

where J is the current density, n is the unitary normal vector to Es, I0 is the current delivered

by the active electrode, A its surface, and σ the conductivity of the surrounding medium.

Disconnected electrodes. The electrodes not actuating as terminals are disconnected.

They must be considered as floating potentials because they are equipotential surfaces with an

unknown potential. This type of boundary condition can be implemented using the linearity

of the problem. As example, let us consider one active electrode, E1, injecting a current I0, and

other electrode, E2, disconnected (I = 0). Now, let ϕ1 be the solution of the potential problem

(1) when the electrode E1 is at 1 V and electrode E2 is at zero potential. Reciprocally, let ϕ2 be

the solution of (1) when the electrode E1 is at zero potential and electrode E2 is at 1 V. Taking

into account the linearity of the problem we can write the general solution of (1) as:

� ¼ a1�1 þ a2�2: ð4Þ

The coefficients α1 and α2 can be calculated imposing the restrictions of our particular prob-

lem. Thus, integrating Eq (3) on the electrodes E1 (active) and E2 (floating), and imposing the

conditions � s
H

E1
n � r� da ¼ I0 and � s

H

E2
n � r� da ¼ 0, we obtain:

a1I11 þ a2I12 ¼ I0 ð5Þ

a1I21 þ a2I22 ¼ 0; ð6Þ

being Inm ¼ � s
H

En
n � r�m da. The solution is given by (4) after solving the unknown coeffi-

cients α1 and α2 of the above equation system.

Boundary condition at the surrounding sphere and reference electrode

Electrode mode. In this case the currents flow from the active electrode, Es, to the refer-

ence one, taken as ground (ϕ = 0). The surrounding sphere is considered to be an isolating sur-

face (J � n = 0), so that the boundary condition is

@�

@n
¼ 0 on @Oext ð7Þ

Neuron mode. Now, the neurons act as potential sources and the small currents emanat-

ing from them are diffused in the medium. In this situation we consider the reference electrode

as a floating potential and the surrounding sphere is modeled as an asymptotic boundary con-

dition that mimics an unbounded domain with null potential at infinity (see e.g., [43, 44]). We

have imposed a first order asymptotic boundary condition (ABC) on the sphere @Oext.

@�

@n
þ
�

R
¼ 0; on @Oext ð8Þ
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This is a homogeneous Robin boundary condition, where R = 20 mm is the radius of the

sphere limiting the domain. The error introduced by this approximation is O(R−3) and it is

accurate enough for our purpose.

Isolating surfaces

The boundary of the silicone carrier is taken as an isolating surface, and therefore, in the part

of @Oint not occupied by the electrodes, we have

@�

@n
¼ 0 ð9Þ

Modeling of the neural response

Line source approximation for computing the extracellular potential. The line source

approximation (LSA) is an easy and accurate approach to compute the extracellular potential

at any point in space using the values of the membrane currents [45–49]. Usually, LSA is used

to calculate an analytic expression of the electric potential produced by line segments in an

homogeneous medium. In this work it is applied to deal with lines having a continuous spatio-

temporal variation in a non homogeneous medium.

In a myelinated nerve fiber the highest current concentration takes place in the nodes of

Ranvier (see, for example, chapter 6 of [50]). Thus, the modelization of a unique nerve fiber

could be performed by placing punctual current sources in the positions of the nodes of Ran-

vier. Nevertheless, each VN of our model represents a great number of myelinated nerve fibers

(about 100) whose nodes of Ranvier can be considered as randomly distributed along the VN.

For this reason, an approach closer to reality is to take the VN as a line source current with a

continuous linear density. Furthermore, this approach presents few difficulties when generat-

ing the FEM mesh.

The current density normal to the surface at the nodes of Ranvier for an ANF, Jr(t), is the

membrane current (ionic and leak) density, obtained from the type H-H (Wang-Buzsaki)

model [51] implemented in [35] (see Fig 4A).

This current density allows us to calculate an equivalent linear current density λ(t) of a VN.

Let us consider an ANF with the following morphology: the total length is l = 2.7 mm and it

has Nr = 135 nodes of Ranvier with a diameter d = 2 μm and length h = 1 μm (see [40] for a dis-

cussion about the ANF morphology). The internodes length is 200 μm. The extracellular cur-

rent source is located at 1 mm from Ranvier node 20 with a negative stimulating current of 2

mA during 100 μs. The membrane current density, Jr(t), is calculated at node 22. Then, the

total charge passing across the membrane in the nodes of Ranvier per unit of time is Jr(t)
Nrπdh, and the equivalent linear current density is λ(t) = Jr(t)Nrπdh/l = 4.65 × 10−8 Jr(t) A m−1.

The propagation throughout the neuron is explicitly introduced by using the expression

λ(t − v−1 s), where v is the propagation velocity and s is the arc length of the trajectory of the

neuron. A similar approach is used in [52], but considering discrete sources, placed at the Ran-

vier nodes, instead of a current line.

In order to show the influence of the propagation velocity in the shape of the extracellular

potential, let us consider the following academic example consisting in a line extended from

(0, 0, −1) mm to (0, 0, 1) mm. In this case, the arc length is s = 1 + z. The explicit calculation of

the potential at any point in space due to the linear current density λ(t − v−1 s) = 6.27 × 10−8
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Jr(t − v−1 s) A m−1 gives

�ðr; z; tÞ ¼
1

4ps

Z 1

� 1

lðt � v� 1ðzþ 1ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz � zÞ2 þ r2

q dz; ð10Þ

where Jr(t) is the membrane current density (see Fig 4A), r and z are cylindrical coordinates of

the the field point, z is the source point along the line, and σ = 1 S m−1 is the conductivity of

the medium. The resulting potentials at cylindrical coordinates r = 1 mm and z = 0 mm, for

velocities v = 2 m s−1, and v = 15 m s−1, are shown in Fig 4B. Note that an increase in the prop-

agation velocity implies a greater amplitude of the ECAP. In addition, the increase in the veloc-

ity causes the duration of the ECAP to decrease, being more similar to that of the stimulus.

Fig 4. Membrane current density and extracellular potential. This figure shows the membrane current generated in

an ANF, used as input in our model (A). Extracellular potentials calculated for an academic example at r = 1 mm and

z = 0 mm corresponding to velocities of propagation of 2 m s−1 (dashed green) and 15 m s−1 (red) are shown in (B).

https://doi.org/10.1371/journal.pcbi.1010134.g004
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In our FEM model we have implemented N = 43 VNs (see Fig 3A). The linear current den-

sity of the nth VN, described by the curve Cn, is:

lnðt � v� 1sÞ ¼ wnðNrpdh=lÞJrðt � v� 1sÞ; ð11Þ

where wn is the weight assigned to this VN. We have taken a propagation velocity v = 15 m s−1

in the ANF [39, 40]. This velocity value is also in consonance with the results obtained in [53].

In general, it is not possible to get an analytic expression for the arc length s of Cn. To over-

come this difficulty, we have constructed a parameterization s(x) by interpolating the numeri-

cal computation of true length for a set of x coordinates.

In Fig 5 it is shown the potential generated at t = 0.4 ms when all the VN are turned off

except the central one.

Determination of the weights. Our model must reproduce the clinical data as accurately

as possible. The only measure of neuronal activity that can be recorded with a CI is the action

potential registered at the recording electrode Er, that is, the ECAP. The objective of the

ECAPs is double. Firstly, we want to know if there is a neural response of the region of the

auditory nerve close to the stimulating electrode. The second aim is to detect the current inten-

sity threshold that evokes an action potential. For this last reason, the ECAPs are carried out

for several current intensities, Ik. We have to determine the weight wn that must be assigned to

each VN so that the amplitude of the potential provided by the model coincides with the

amplitude of the action potential registered by the ECAP. The amplitudes are the difference

between negative N1, and positive P2 peaks for both real and simulated action potentials.

First of all, a remark about the enumeration of the electrodes should be pointed out. As our

computational model only represents a portion of the real CI, we always take the stimulating

electrode Es as the central one and it will be considered as electrode 0. The rest of electrodes

are enumerated with positive or negative numbers, depending on the relative position with

respect to the central one. The local numbering adopted for the real CI is similar to the num-

bering of the model (considering Es as electrode 0). The numeration of the VNs follows an

analogous criterion: the VN over the stimulating electrode is taken as 0 and the rest of VNs are

Fig 5. Potential. Representation of the potential generated by the VN placed in the central position at t = 0.4 ms.

https://doi.org/10.1371/journal.pcbi.1010134.g005
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enumerated with positive or negative numbers. Fig 6 shows three real ECAPs corresponding

to three stimulation currents delivered by a basal electrode. In this case, the recording elec-

trode is placed two electrodes away from the stimulating one (electrode 2 in our local

numbering).

We denominate �
e
ECAPðIkÞ to the amplitude of the action potential registered by the ECAP at

the eth electrode when the stimulating electrode Es supplies a current Ik. �en is the amplitude of

the simulated potential produced by the nth VN and measured at the electrode eth, when the

nth VN is turned on and the other VNs are turned off. We assume in this situation that all the

active VNs are fed with the same linear current density. As an example, in Fig 7 it is shown the

potential computed at electrode 2 (two electrodes away from Es) when all the VNs, except the

central one, are turned off. Comparing Figs 6 and 7 it can be seen that the shapes of both

ECAPs are similar. Furthermore, the time lapse between N1 and P2 is also similar, being

around 0.4 ms for real ECAPs and 0.5 ms for the computed ECAP.

The weight we
nðIkÞ by which �

e
n must be multiplied to be equal to �

e
ECAPðIkÞ is given by:

�
e
ECAPðIkÞ ¼ we

nðIkÞ�
e
n: ð12Þ

This equation reflects that we only need one VN to reproduce the amplitude of the ECAP mea-

sured at a given electrode e. However, a computational model with a unique VN is not able to

specify what region of the auditory nerve is affected after the stimulation of the active elec-

trode. To be able to discriminate which part of the auditory nerve is activated, we need a con-

siderable number of VNs. If we have N VNs and a unique ECAP measure, there are N − 1

extra degrees of freedom (weights) that must be determined. This is the usual situation, in

which the ECAP measure is carried out at the electrode +2 (two electrodes away from the

stimulating one). If we multiply Eq (12) by an arbitrary parameter δn and sum for all the VNs

Fig 6. Real ECAPs produced by three stimulation currents. This figure shows the resulting ECAPs, provided by Custom Sound Evoke Potentials

software from Cochlear, after the following stimulation currents: I1 = 0.41 mA (green line), I2 = 0.65 mA (orange line) and I3 = 1.02 mA (blue line).

https://doi.org/10.1371/journal.pcbi.1010134.g006
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we obtain:

XN0

n¼� N0
dn�

e
ECAPðIkÞ ¼

XN0

n¼� N0
dnw

e
nðIkÞ�

e
n; ð13Þ

where N 0 ¼ N� 1

2
, being N the number (odd) of VNs. Writing D ¼

PN0

n¼� N0 dn we deduce from

the equation above:

�
e
ECAPðIkÞ ¼

XN0

n¼� N0

dn
D
we
nðIkÞ�

e
n ¼

XN0

n¼� N0
�we
nðIkÞ�

e
n; ð14Þ

where �we
n ¼

dn
D
we
n are the new weights. Eq (14) shows that the potential registered at electrode

e is the sum of the weighted contributions of the potentials produced for each VN. The arbi-

trary parameters δn represent the extra degrees of freedom, introduced by the additional VNs,

that will be related with a proper physical magnitude.

Suppose that for a selected number of patients we have a number of ECAPs samples Nd> 1

for each current Ik. We intend to train our model with these samples in order to be valid in the

usual situations, where we only have a unique ECAP. Our objective is twofold. Using the

expression (14), we want to interpolate the amplitude of the ECAP for a given electrode,

named anchor electrode. This electrode is the one for which the computed and measured

amplitudes of the ECAPs are enforced to be identical. In addition, we want the difference

between the ECAP amplitudes provided by the clinical data and those calculated by the model

to be as small as possible in the remaining electrodes. The achievement of the latter objective

lies in the proper choice of the δn coefficients.

Specifically, let a be the anchor electrode. Following the Eq (12) we calculate the

weights wa
nðIkÞ using the data �

a
ECAPðIkÞ. Introducing these weights in the second term of

Fig 7. ECAP generated by VN number 0 at electrode 2 for a propagation velocity v = 15 m s−1.

https://doi.org/10.1371/journal.pcbi.1010134.g007
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Eq (14) we have:

�
e
ECAP;compðIkÞ ¼

XN0

n¼� N0
�wa
nðIkÞ�

e
n; ð15Þ

where �wa
n ¼

dn
D
wa
n. This is the expected amplitude of the potential at eth electrode, but com-

puted from the ECAP given at the anchor electrode a. Obviously, if e = a we have

�
e
ECAP;compðIkÞ ¼ �

e
ECAPðIkÞ, but this is not true for the rest of electrodes. The objective is to find

the parameters δn that minimize the difference between �
e
ECAP;compðIkÞ and �

e
ECAPðIkÞ using the

remaining Nd − 1 data. In the next subsection we will explain how to calculate these

parameters.

Relation of δn with the current density. The usefulness of a computational model is

linked to its ability to predict what happens when electrical or structural changes occur in the

CI, such as the type of electrode stimulation (bipolar, tripolar, etc.), the geometric design of

the electrodes [12], the distance between the electrode array and the auditory nerve (perimo-

diolar vs lateral implant), etc. The only way for the model to be sensitive to these changes is to

link the weights to some physical variable that varies when the design changes. For the reasons

outlined below, we consider this variable to be the current density norm.

The input current establishes a distribution of potential and current density along the VNs.

In Fig 8 it is shown the current densities at the first eleven VNs (from 0 to 10) when the stimu-

lating electrode supplies a current of −1 mA. Most of the models for neural simulation attri-

bute the activation of the neuron to the difference of potentials along the axon [18, 54].

Nevertheless, the most accurate electrodiffusion models based on the Poisson-Nernst-Planck

attribute the trigger of an action potential to the ion currents normal to the surface of the fibers

[47, 50]. An experimental study of how the orientation of the electric field affects the central

Fig 8. Current densities at the first 11 VN when Es supply a current of −1 mA.

https://doi.org/10.1371/journal.pcbi.1010134.g008
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nervous system neurons is presented in [55]. In myelinated fibers the ionic flux takes place in

the nodes of Ranvier. It is extremely difficult to know with precision which is the normal vec-

tor to the Ranvier nodes in the cochlear nerve. As our VNs represent a set of real ANF, we con-

sider more realistic to link the probability of excitation of a nerve fiber to the norm of the

current density, J = |J|, generated by Es. However, J variates along the VN, but we need to

assign a unique weight to each VN.

It seems reasonable to think that the higher the current density reaching the VN, the greater

should be δn. This motivates us to define the parameters δn as the probability Pn that an ANF,

represented by a VN, is excited. This probability Pn must increase when the current density on

the VN increases. This idea is inspired by the paper [15], where the authors use an integrated-

gaussian distribution to calculate the probability of discharge of an ANF in terms of stimulus

intensity. To calculate, Pn, firstly we define the probability per unit length, pn, of a section ANF

to be excited with a current density less than or equal to J:

pn ¼
FðJ; a; b; Jmax; JminÞ

L
; ð16Þ

where L is the length of the VN and

FðJ; a;b; Jmax; JminÞ ¼
Z J

Jmin
f ðX; a; b; Jmin; JmaxÞdX ð17Þ

is the cumulative distribution function of a beta distribution probability defined in the interval

[Jmin, Jmax] (see e.g., [56]) given by:

f ðX; a; b; Jmin; JmaxÞ ¼
1

Jmax � Jmin

Gðaþ bÞ

GðaÞGðbÞ

X � Jmin
Jmax � Jmin

!a� 1 
Jmax � X
Jmax � Jmin

!b� 1

;

0

@ ð18Þ

where Γ is the gamma function, Jmin is the current density threshold below which there is no

response to the input stimulus, and Jmax a maximum current density that will be adjusted to

the particular problem. Thus, the probability of excitation of the complete ANF, and our defi-

nition of δn, is:

dn ¼ Pn ¼
Z

Cn

pnds ¼
1

L

Z

Cn

FðJ; a; b; Jmax; JminÞds; ð19Þ

where Cn is the curve described by the nth VN and s is the arc length along this curve.

Note that, since our model is symmetric with respect to the stimulating electrode, so are the

current densities. As a consequence of this symmetry, the delta parameters verify that δn = δ−n.
However, in general, this is not true for weights �wa

n.

The choice of the beta distribution is due to the fact that it constitutes a family of continu-

ous probability distributions supported on a finite interval. In practice, we take Jmin = 0 and α,

β and Jmax are calculated to fit the clinical data using a differential evolution algorithm. The

flexibility of the beta distribution makes it very suitable for this purpose.

Once the connection between δn and J is established, we could interpret the weights �wa
n as

the number of real neurons of each VN that have been activated.

Outline of the model. Let XECAP ¼ fe1; e2; . . . ; eNdg be the set of electrodes where we have

an ECAP measure. The flowchart of the program used to fit the model is shown in Fig 9.

1. FEM (electrode mode) is used to calculate the electric potential originated by the stimulat-

ing electrode Es when it supplies the intensities Ik, k = 1, . . ., Nlev. With these results, the cur-

rent density at each VN, Jk,n, n = 1, . . ., N is calculated.
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2. The electric potential ϕn(x, y, z) produced by each VN acting alone is evaluated with FEM

(neuron mode). Afterwards, the amplitudes �
e
n of the potentials at each electrode where we

have ECAP data e = 1, . . ., Nd are computed.

3. A particular anchor electrode a to interpolate the amplitude is chosen. Additionally, the

weights wa
n are obtained.

4. The differential evolution algorithm selects new values of α, β and Jmax.

5. The parameters δn are evaluated using Eq (19). Then, the weights �wa
nðIkÞ and the computed

ECAP �
e
ECAP;compðIkÞ Eq (15) are calculated.

Fig 9. Flowchart of the program.

https://doi.org/10.1371/journal.pcbi.1010134.g009
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6. Finally, the fitness function E ¼
PNlev

k¼1

P
e2XECAP

j�
e
ECAP;compðIkÞ � �

e
ECAPðIkÞj

p
is computed.

This function evaluates the error between the computed and real ECAPs. A power p = 4 has

been selected for our applications.

Steps 4 to 6, belonging to the DE algorithm, are iteratively repeated until the stopping crite-

rion (either E< tol or iter > maxiter) is satisfied.

As a result of this algorithm we obtain the parameters α, β and Jmax that minimize the dif-

ference between �
e
ECAP;comðIkÞ and �

e
ECAPðIkÞ.

Differential evolution algorithm for fitting the clinical data. Differential evolution

(DE) is a population based stochastic search technique successfully and widely used as global

optimizer inspired by the Darwinian principle of natural selection and genetic reproduction

[57, 58]. It is currently being considered as one of the most powerful stochastic real-parameter

optimization algorithms [59]. Its application in engineering and applied sciences has contrib-

uted to optimize and solve problems in many fields (e.g.: in the bioinformatics and biomedical

engineering field, [60]); particularly, in relation with the type of problem required to be solved

in this work, it has been applied in parameter estimation (e.g.: [61–63]).

Our optimization problem consists of a chromosome of three variables: α, β and Jmax, whose

minimum and maximum initial constraint limits for the variables searched are (0, 0, 0) and

(2000, 2000, 1500), respectively, although the DE could attain values out of those limits if they

improve the fitness function. After trying different DE configurations, we have observed that

the problem rapidly converges and the result hardly depends on the selected configuration.

Attained weights used in the Results section were obtained with a population size of 10 indi-

viduals, with crossover probability of 1, and stopping criterion set to a maximum of 300 genera-

tions (maxiter), or alternatively, achieving a value of the fitness function (as exposed in step 6

of the above section) of tol = 10−30. An often used DE/rand/1/bin strategy has been set (as in

the aforementioned references of parameter estimation problems: [62, 63]), particularly using

per-vector-dither (of F weight). As an example, in Table 1 it is shown the parameters obtained

after the optimization for the first test presented in the Results section (Fig 10).

ECAP recording

The clinical data provided from the Hospital Insular de Gran Canaria correspond to two

patients meeting the following selection criteria: adults (> 18 years) implanted with a Cochlear

CI532 half-band perimodiolar electrode array [64], having a full insertion of the electrode

array, having five or more adjacent active electrodes for the ECAPs recording and being CI

holders with more than 6 months of use.

The ECAPs have been recorded by means of the software Custom Sound Evoke Potentials

(Cochlear Ltd. Sydney, Australia). The Neural Response Telemetry (NRT) technique records,

in a neighboring electrode, the action potential resulted from the stimulus applied on a given

electrode. Forward masking [65] was used to reduce the electrical artifact produced by stimula-

tion. From now on, instead of ECAP, the term NRT is used in next sections because it was the

procedure used for recording.

Table 1. Parameters obtained after the optimization corresponding to first test of the Results section (Fig 10).

Patient Stimulating Electrode α β Jmax [A/m2] error (E1/p) [μV]

1 6 4.17 88.35 672.44 25.72

1 18 0.53 3.74 672.44 14.29

2 6 1.13 16.27 672.44 134.27

2 18 0.76 5.43 672.44 140.04

https://doi.org/10.1371/journal.pcbi.1010134.t001
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The CI532 is numerated from most basal to most apical. The selected stimulating electrodes

are 6 (basal) and 18 (apical). The standard NRT measurement typically uses the +2 electrode

to record the action potential. A broader set of data is needed in order to adjust the proposed

computational model. Therefore, in this work, we have extended the number of recording

electrodes until 8 (the 4 consecutive ones on each side).

Results

We have several options to choose the electrode that interpolates the NRT: the anchor elec-

trode. We could either select any of the recording electrodes, or interpolate the value of the

NRT in the stimulating electrode (electrode 0), since we do not have NRT measure in this

Fig 10. Symmetric fitting. Comparison between real and simulated NRT amplitudes for the two patients at the

electrodes 6 (basal) and 18 (apical) (upper row A and B). Corresponding weights �w0
nðIkÞ (bottom row A and B). The

anchor electrode is 0 in both cases. RMSE and normalized RMSE (nRMSE) values are shown.

https://doi.org/10.1371/journal.pcbi.1010134.g010
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electrode. This last choice has the particularity of producing symmetrical results with respect

to the stimulating electrode, that is �w0
n ¼ �w0

� n. It is especially suitable when the clinical data

present this type of symmetry.

The first test consists in adjusting the NRT values of the two patients using all available

data. The anchor electrode chosen in this case has been a = 0.

Fig 10A (upper row) shows �
e
ECAPðIkÞ and the fitted values of �

e
ECAP;compðIkÞ for the three

input currents I1 = 0.41 mA, I2 = 0.65 mA and I3 = 1.02 mA for patient 1. The lower part of Fig

10A shows the corresponding weights �w0
nðIkÞ, n = {−21, . . ., 0, . . ., 21}. Fig 10B shows the same

result than A, for patient 2. In general, the results show a good agreement between the real and

simulated data. The greatest difference occurs at the electrode 6 of patient 2. This difference is

due to the great asymmetry of real data.

The selection of the anchor influences the NRT fitting, which is evaluated using the root

mean square error (RMSE). The effect of choosing the optimum anchor, defined as the one

that gives rise to the minimum RMSE, is analyzed here using the real data of Fig 10. Left and

right parts of Fig 11 show, for patient 2, the NRTs fitting using electrodes 6 and 18 as the stim-

ulating ones and being electrodes +4 and +1 the optimum anchors, respectively. The optimum

anchor for patient 1 is the electrode 0, which is the same as in Fig 10A. So, the results for

patient 1 choosing the optimum anchor are not shown in Fig 11.

Fig 11. Fitting with optimal anchor. Real and computed NRT amplitudes for the patient 2 choosing the optimum anchor. The global and

normalized RMSE of data fitting are shown at the upper row of pictures. Corresponding weights �w4
nðIkÞ (left) and �w1

nðIkÞ (right) are shown at

the bottom row of pictures.

https://doi.org/10.1371/journal.pcbi.1010134.g011
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It can be appreciated that the fitting amplitude of the simulated NRT to the clinical data has

improved compared to Fig 10B.

Note that a central anchor imposes a symmetrical fitting for asymmetric data. It is logical

that the optimal anchors (+4 and +1) are not the central ones since the clinical data are asym-

metric (see Fig 11).

The improvement of the fittings are evaluated using the normalized root mean square errors:

nRMSE = RMSE / (max(NRT Amplitude) − min(NRT Amplitude)). In the case of patient 2 and

stimulating electrode 6, the nRMSE of the fitting goes from 0.10 (RMSE = 46.46 μV), when we

choose the central anchor (Fig 10B, left), to 0.03 (RMSE = 12.01 >μV), when using +4 optimal

anchor (Fig 11, left), that is, an improvement of 70%. In the case of patient 2 and stimulating

electrode 18, the nRMSE of the fitting goes from 0.05 (RMSE = 45.09 μV), when we choose

the central anchor (Fig 10B, right), to 0.04 (RMSE = 34.64 μV), when using +1 optimal anchor

(Fig 11, right), that is, an improvement of 20%.

In Fig 12 it is shown the real and computed NRTs from the patient 1, after stimulating elec-

trode 6 and recording at electrode 8 (+2 in local numbering). Note that the values of peaks N1

and P2 of the real and computed graphics are similar and so is the time lapse between them.

The third test consists in discarding some real data in the fitting procedure of the model.

Fig 13 shows the results of �
e
ECAPðIkÞ and �

e
ECAP;compðIkÞ after removing the data of the electrodes

Fig 12. Comparison between real and simulated NRT. Real NRT from patient 1 and stimulating electrode 6 with the intensity I3 = 1.02 mA and

recorded at electrode +2 (red). Computed NRT fitted to the patient data (blue).

https://doi.org/10.1371/journal.pcbi.1010134.g012
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±1 and ±3. The anchor electrode is the optimum from the available data. It can be seen that,

despite the lack of data, the agreement between the real and simulated data is satisfactory.

The last test tries to reproduce the usual situation in which we only know the NRT of the

electrode +2 of a certain patient. Lack of data does not allow calculating the δn parameters for

this patient. A possibility to calculate the weights �wþ2
n is to take δn from other patient and to

use the NRT of the patient under study to calculate wþ2
n . Thus, the final weights are

�wþ2
n ¼

dn
D
wþ2
n .

Fig 14 reproduces this situation. In particular, Fig 14 (left) shows the amplitudes of the

NRT for the patient 1 and electrode 6 in which the δn have been taken from the patient 2. Fig

14 (right) reproduces the same experiment, but now the δn of the electrode 18 and patient 1

Fig 13. Comparison between real and simulated NRT amplitudes with incomplete training dataset. Resulting NRT

amplitudes using only the values from electrodes ±2 and ±4 as training data for the optimization. The anchor electrode

is the optimal in both cases. RMSE and normalized RMSE (nRMSE) values are shown.

https://doi.org/10.1371/journal.pcbi.1010134.g013
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have been transferred to patient 2. Note that, even in this case, the agreement between real

data and computed result is very good.

The RMSE values between clinical and simulated data are shown in Figs 10, 11, 13 and 14.

Discussion

We have developed a computational model to simulate the neural response to electrical stimu-

lus of CIs. The fitting parameters of our model (the weights) depend on the current density

distribution. This dependence gives our model the ability to predict variations in response to

changes in the design or configuration of the CI.

One of the most relevant characteristics of our model is its ability to reproduce the NRT val-

ues of each patient and electrode. These data can vary widely. For example, the values recorded

at electrode 20 (+2 in the local numbering) when we stimulate electrode 18 with a current I3 =

1.02 mA are 202.18 μV for patient 1 and 806.35 μV for patient 2, as can be seen in the upper

right corners of Fig 10A and 10B. That is, the variation in the amplitude of the NRT is

604.17 μV. Our model reproduces the NRTs of each patient with an RMSE less than 46.46 μV

(see caption of Fig 10). As far as we know, no other cochlear model published in the literature

has this ability to adapt to clinical data.

The example in Fig 14 shows the ability to predict NRT values by simulating the usual situa-

tion where only the NRT at the +2 electrode is known. The NRT measurements of the other

electrodes have been used only to contrast the model, but not to fit it. In this example, the δn
parameters of patient 1 are used in patient 2, and vice versa. The greatest discrepancy between

the clinical and simulated NRT amplitudes is 205, 27 μV, that is, 23.7%, and it occurs in patient

2 and electrode 1 with a current I3 = 1.02 mA (Fig 14 right). This experiment shows, to some

extent, the predictive capacity of our model. Nevertheless, it would be necessary to collect data

from more patients to validate such predictive capacity. We will intend to complete a larger

database in the future.

The model could help in the classification of patients according to the type of pathology.

For example, it could be useful to determine dead regions of the auditory nerve. Our model

can also be used to determine the focusing capacity of an electrode [12]. A higher focusing

capacity is linked to a lower spreading of the current and, therefore, a higher concentration of

the weights around the stimulating electrode.

Fig 14. NRT prediction test. NRT amplitudes of the patient 1 and electrode 6 with δn taken from the patient 2 (left), and NRT

amplitudes of the patient 2 and electrode 18 with δn from patient 1 (right). RMSE and normalized RMSE (nRMSE) values are shown.

Stimulation currents: I1 = 0.41 mA, I2 = 0.65 mA, I3 = 1.02 mA.

https://doi.org/10.1371/journal.pcbi.1010134.g014
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Our straight cochlea model has certain limitations. For instance, it produces symmetric

transimpedances when the central electrode is stimulated. The symmetry of the model implies

that Zi0 = Z−i0. This means that the potential registered at the electrode i is equal to the poten-

tial registered in the electrode −i, when the electrode 0 (central) is stimulated. The construction

of a more realistic 3D geometric model could improve the concordance between the clinical

data and its modeling. Furthermore, a patient-adapted model can be built from computerized

tomography scans [66].

The conductivity σext has been fitted using the transimpedances of patient one, but the

model could be fitted by using the specific values of each patient.

Our model considers that all the VN are activated at the same time. The biological reality is

more complex and there is not a perfect synchronization in the activation of neurons. This

lack of synchronization may have some effect on the recorded ECAP and could be taken into

account in future work.

In this work we have considered that the propagation velocity of the action potential is uni-

form throughout the neuron. However, this velocity is different depending on the section of

the neuron considered, due to the change in the diameters between axon and dendrite [53].

This question could be considered in future work.

The input membrane current used in this work was provided by [35]. However, another

H-H-type model could be taken for providing the input current, although the weights obtained

after adjusting the computed ECAP to the clinical data would be different, given that the

amplitude of the membrane current could vary according to the type of H-H model selected.

In this study only ionic and leak currents were used. This is because clinical records,

obtained by the NRT technique, only present the N1-P2 response due to the electrical artifact

cancellation procedure (see Fig 12). If we use a multi-compartment model it is possible to

include the capacitive current, but in this case appears the P1-N1-P2 complex. If we wanted to

include the capacitive current, we would have to remove the part of the wave that contains P1

in order to adjust the computed ECAP to the real recording.

Our phenomenological model, by construction, will always find the optimal solution to

adjust the ECAPs. As indicated in Method section, the weights represent the number of acti-

vated neurons that each virtual neuron represents. The interpretation of the weights will be

more or less realistic depending on the data provided to the model (more realistic geometry,

conductivities, density of the auditory nerve, etc.). The more the model conforms to reality,

the more credible the interpretation of the weights will be.
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Resources: Ángel Ramos-de-Miguel, José M. Escobar, Domingo Benı́tez, Marcos Hernández,

Ángel Ramos-Macı́as.
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29. Jürgens T, Hohmann V, Büchner A, Nogueira W. The effects of electrical field spatial spread and some

cognitive factors on speech-in-noise performance of individual cochlear implant users—A computer

model study. PLoS ONE 13(4): e0193842, 2018. https://doi.org/10.1371/journal.pone.0193842 PMID:

29652892

30. Nogueira W, Ashida G. Development of a Parametric Model of the Electrically Stimulated Auditory

Nerve. In: Biomedical Technology: Modeling, Experiments and Simulation, Eds.: Wriggers P and

Lenarz T, Springer International Publishing, 2018, 349–362. https://doi.org/10.1007/978-3-319-59548-

1_19

31. Dong Y, Briaire JJ, Biesheuvel JD, Stronks HC, Frijns JHM. Unravelling the temporal properties of

human eCAPs through an iterative deconvolution model. Hear Res., Vol. 395, 2020. https://doi.org/10.

1016/j.heares.2020.108037 PMID: 32827881

32. Bai S, Encke J, Obando-Leitón M, Weiß R, Schäfer F, Eberharter J, Böhnke F, Hemmert W. Electrical
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