Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/115204
DC FieldValueLanguage
dc.contributor.authorGómez Déniz, Emilioen_US
dc.contributor.authorLeiva, Victoren_US
dc.contributor.authorCalderín Ojeda,Enriqueen_US
dc.contributor.authorChesneau, Christopheen_US
dc.date.accessioned2022-06-15T08:06:23Z-
dc.date.available2022-06-15T08:06:23Z-
dc.date.issued2022en_US
dc.identifier.issn2238-3603en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/115204-
dc.description.abstractData including significant losses are a pervasive issue in general insurance. The computation of premiums and reinsurance premiums, using deductibles, in situations of heavy right tail for the empirical distribution, is crucial. In this paper, we propose a mixture model obtained by compounding the Birnbaum-Saunders and gamma distributions to describe actuarial data related to financial losses. Closed-form credibility and limited expected value premiums are obtained. Moment estimators are utilized as starting values in the non-linear search procedure to derive the maximum-likelihood estimators and the asymptotic variance-covariance matrix for these estimators is determined. In comparison to other competing models commonly employed in the actuarial literature, the new mixture distribution provides a satisfactory fit to empirical data across the entire range of their distribution. The right tail of the empirical distribution is essential in the modeling and computation of reinsurance premiums. In addition, in this paper, to make advantage of all available data, we create a regression structure based on the compound distribution. Then, the response variable is explained as a function of a set of covariates using this structure.en_US
dc.languageengen_US
dc.relation.ispartofComputational & Applied Mathematicsen_US
dc.sourceComputational & Applied Mathematics[ISSN 2238-3603],v. 41 (4), (Junio 2022)en_US
dc.subject5302 Econometríaen_US
dc.subject530204 Estadística económicaen_US
dc.subject.otherModelen_US
dc.subject.otherActuarial Dataen_US
dc.subject.otherDiscrete Mixture Distributionen_US
dc.subject.otherMathematica Softwareen_US
dc.subject.otherMoment And Maximum-Likelihood Estimationen_US
dc.titleA novel claim size distribution based on a Birnbaum-Saunders and gamma mixture capturing extreme values in insurance: estimation, regression, and applicationsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s40314-022-01875-6en_US
dc.identifier.isi000793850900001-
dc.identifier.eissn1807-0302-
dc.identifier.issue4-
dc.relation.volume41en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.contributor.daisngid51116951-
dc.contributor.daisngid43527418-
dc.contributor.daisngid48052563-
dc.contributor.daisngid732875-
dc.description.numberofpages22en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Gomez-Deniz, E-
dc.contributor.wosstandardWOS:Leiva, V-
dc.contributor.wosstandardWOS:Calderin-Ojeda, E-
dc.contributor.wosstandardWOS:Chesneau, C-
dc.date.coverdateJunio 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,581
dc.description.jcr2,6
dc.description.sjrqQ2
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameGómez Déniz, Emilio-
crisitem.author.fullNameCalderín Ojeda,Enrique-
Appears in Collections:Artículos
Unknown (733,59 kB)
Show simple item record

WEB OF SCIENCETM
Citations

7
checked on Nov 17, 2024

Page view(s)

38
checked on Nov 11, 2023

Download(s)

51
checked on Nov 11, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.