Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/115204
Título: | A novel claim size distribution based on a Birnbaum-Saunders and gamma mixture capturing extreme values in insurance: estimation, regression, and applications | Autores/as: | Gómez Déniz, Emilio Leiva, Victor Calderín Ojeda,Enrique Chesneau, Christophe |
Clasificación UNESCO: | 5302 Econometría 530204 Estadística económica |
Palabras clave: | Model Actuarial Data Discrete Mixture Distribution Mathematica Software Moment And Maximum-Likelihood Estimation |
Fecha de publicación: | 2022 | Publicación seriada: | Computational & Applied Mathematics | Resumen: | Data including significant losses are a pervasive issue in general insurance. The computation of premiums and reinsurance premiums, using deductibles, in situations of heavy right tail for the empirical distribution, is crucial. In this paper, we propose a mixture model obtained by compounding the Birnbaum-Saunders and gamma distributions to describe actuarial data related to financial losses. Closed-form credibility and limited expected value premiums are obtained. Moment estimators are utilized as starting values in the non-linear search procedure to derive the maximum-likelihood estimators and the asymptotic variance-covariance matrix for these estimators is determined. In comparison to other competing models commonly employed in the actuarial literature, the new mixture distribution provides a satisfactory fit to empirical data across the entire range of their distribution. The right tail of the empirical distribution is essential in the modeling and computation of reinsurance premiums. In addition, in this paper, to make advantage of all available data, we create a regression structure based on the compound distribution. Then, the response variable is explained as a function of a set of covariates using this structure. | URI: | http://hdl.handle.net/10553/115204 | ISSN: | 2238-3603 | DOI: | 10.1007/s40314-022-01875-6 | Fuente: | Computational & Applied Mathematics[ISSN 2238-3603],v. 41 (4), (Junio 2022) |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
7
actualizado el 17-nov-2024
Visitas
38
actualizado el 11-nov-2023
Descargas
51
actualizado el 11-nov-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.