Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/115204
Título: A novel claim size distribution based on a Birnbaum-Saunders and gamma mixture capturing extreme values in insurance: estimation, regression, and applications
Autores/as: Gómez Déniz, Emilio 
Leiva, Victor
Calderín Ojeda,Enrique 
Chesneau, Christophe
Clasificación UNESCO: 5302 Econometría
530204 Estadística económica
Palabras clave: Model
Actuarial Data
Discrete Mixture Distribution
Mathematica Software
Moment And Maximum-Likelihood Estimation
Fecha de publicación: 2022
Publicación seriada: Computational & Applied Mathematics 
Resumen: Data including significant losses are a pervasive issue in general insurance. The computation of premiums and reinsurance premiums, using deductibles, in situations of heavy right tail for the empirical distribution, is crucial. In this paper, we propose a mixture model obtained by compounding the Birnbaum-Saunders and gamma distributions to describe actuarial data related to financial losses. Closed-form credibility and limited expected value premiums are obtained. Moment estimators are utilized as starting values in the non-linear search procedure to derive the maximum-likelihood estimators and the asymptotic variance-covariance matrix for these estimators is determined. In comparison to other competing models commonly employed in the actuarial literature, the new mixture distribution provides a satisfactory fit to empirical data across the entire range of their distribution. The right tail of the empirical distribution is essential in the modeling and computation of reinsurance premiums. In addition, in this paper, to make advantage of all available data, we create a regression structure based on the compound distribution. Then, the response variable is explained as a function of a set of covariates using this structure.
URI: http://hdl.handle.net/10553/115204
ISSN: 2238-3603
DOI: 10.1007/s40314-022-01875-6
Fuente: Computational & Applied Mathematics[ISSN 2238-3603],v. 41 (4), (Junio 2022)
Colección:Artículos
Unknown (733,59 kB)
Vista completa

Citas de WEB OF SCIENCETM
Citations

7
actualizado el 22-dic-2024

Visitas

38
actualizado el 11-nov-2023

Descargas

51
actualizado el 11-nov-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.