Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/114849
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Singh, Pushpendra | en_US |
dc.contributor.author | Meena, Nand Kishor | en_US |
dc.contributor.author | Yang, Jin | en_US |
dc.contributor.author | Bishnoi, Shree Krishna | en_US |
dc.contributor.author | Vega Fuentes, Eduardo | en_US |
dc.contributor.author | Lou, Chengwei | en_US |
dc.date.accessioned | 2022-05-24T09:56:17Z | - |
dc.date.available | 2022-05-24T09:56:17Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 1996-1073 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/114849 | - |
dc.description.abstract | This article presents a two-stage optimization model aiming to determine optimal energy mix in distribution networks, i.e., battery energy storage, fuel cell, and wind turbines. It aims to alleviate the impact of high renewable penetration on the systems. To solve the proposed complex optimization model, a standard variant of the dragonfly algorithm (DA) has been improved and then applied to find the optimal mix of distributed energy resources. The suggested improvements are validated before their application. A heuristic approach has also been introduced to solve the second stage problem that determines the optimal power dispatch of battery energy storage as per the size suggested by the first stage. The proposed framework was implemented on a benchmark 33-bus and a practical Indian 108-bus distribution network over different test cases. The proposed model for energy mix and modified DA technique has significantly enhanced the operational performance of the network in terms of average annual energy loss reduction, node voltage profiles, and demand fluctuation caused by renewables. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Energies (Basel) | en_US |
dc.source | Energies (Basel) [ISSN 1996-1073], v. 14 (18), 5690, (2021) | en_US |
dc.subject | 3306 Ingeniería y tecnología eléctricas | en_US |
dc.subject.other | Battery energy storage system | en_US |
dc.subject.other | Distribution networks | en_US |
dc.subject.other | Fuel cells | en_US |
dc.subject.other | Optimization | en_US |
dc.subject.other | Wind turbines | en_US |
dc.title | Modified Dragonfly Optimisation for Distributed Energy Mix in Distribution Networks | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.3390/en14185690 | en_US |
dc.identifier.scopus | 2-s2.0-85114957898 | - |
dc.identifier.isi | WOS:000699440300001 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.identifier.issue | 18 | - |
dc.relation.volume | 14 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.notas | This article belongs to the Special Issue Design and Management of Electric Power Grids and Distributed Energy Resources for Low-Carbon Energy Distribution Systems | en_US |
dc.identifier.external | 99753816 | - |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.description.sjr | 0,653 | |
dc.description.jcr | 3,252 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q3 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,6 | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUMA: Sistemas de Información y Comunicaciones | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Eléctrica | - |
crisitem.author.orcid | 0000-0002-9194-5119 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Vega Fuentes, Eduardo | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.