Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114849
Título: Modified Dragonfly Optimisation for Distributed Energy Mix in Distribution Networks
Autores/as: Singh, Pushpendra
Meena, Nand Kishor
Yang, Jin
Bishnoi, Shree Krishna
Vega Fuentes, Eduardo 
Lou, Chengwei
Clasificación UNESCO: 3306 Ingeniería y tecnología eléctricas
Palabras clave: Battery energy storage system
Distribution networks
Fuel cells
Optimization
Wind turbines
Fecha de publicación: 2021
Publicación seriada: Energies (Basel) 
Resumen: This article presents a two-stage optimization model aiming to determine optimal energy mix in distribution networks, i.e., battery energy storage, fuel cell, and wind turbines. It aims to alleviate the impact of high renewable penetration on the systems. To solve the proposed complex optimization model, a standard variant of the dragonfly algorithm (DA) has been improved and then applied to find the optimal mix of distributed energy resources. The suggested improvements are validated before their application. A heuristic approach has also been introduced to solve the second stage problem that determines the optimal power dispatch of battery energy storage as per the size suggested by the first stage. The proposed framework was implemented on a benchmark 33-bus and a practical Indian 108-bus distribution network over different test cases. The proposed model for energy mix and modified DA technique has significantly enhanced the operational performance of the network in terms of average annual energy loss reduction, node voltage profiles, and demand fluctuation caused by renewables.
URI: http://hdl.handle.net/10553/114849
ISSN: 1996-1073
DOI: 10.3390/en14185690
Fuente: Energies (Basel) [ISSN 1996-1073], v. 14 (18), 5690, (2021)
Colección:Artículos
Adobe PDF (315,09 kB)
Vista completa

Citas SCOPUSTM   

4
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 17-nov-2024

Visitas

79
actualizado el 27-jul-2024

Descargas

53
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.