Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/114849
Título: | Modified Dragonfly Optimisation for Distributed Energy Mix in Distribution Networks | Autores/as: | Singh, Pushpendra Meena, Nand Kishor Yang, Jin Bishnoi, Shree Krishna Vega Fuentes, Eduardo Lou, Chengwei |
Clasificación UNESCO: | 3306 Ingeniería y tecnología eléctricas | Palabras clave: | Battery energy storage system Distribution networks Fuel cells Optimization Wind turbines |
Fecha de publicación: | 2021 | Publicación seriada: | Energies (Basel) | Resumen: | This article presents a two-stage optimization model aiming to determine optimal energy mix in distribution networks, i.e., battery energy storage, fuel cell, and wind turbines. It aims to alleviate the impact of high renewable penetration on the systems. To solve the proposed complex optimization model, a standard variant of the dragonfly algorithm (DA) has been improved and then applied to find the optimal mix of distributed energy resources. The suggested improvements are validated before their application. A heuristic approach has also been introduced to solve the second stage problem that determines the optimal power dispatch of battery energy storage as per the size suggested by the first stage. The proposed framework was implemented on a benchmark 33-bus and a practical Indian 108-bus distribution network over different test cases. The proposed model for energy mix and modified DA technique has significantly enhanced the operational performance of the network in terms of average annual energy loss reduction, node voltage profiles, and demand fluctuation caused by renewables. | URI: | http://hdl.handle.net/10553/114849 | ISSN: | 1996-1073 | DOI: | 10.3390/en14185690 | Fuente: | Energies (Basel) [ISSN 1996-1073], v. 14 (18), 5690, (2021) |
Colección: | Artículos |
Citas SCOPUSTM
4
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 17-nov-2024
Visitas
79
actualizado el 27-jul-2024
Descargas
53
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.