Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114790
Campo DC Valoridioma
dc.contributor.authorOrtega Zamorano, Franciscoen_US
dc.contributor.authorJerez, JMen_US
dc.contributor.authorFranco, Len_US
dc.date.accessioned2022-05-18T08:52:32Z-
dc.date.available2022-05-18T08:52:32Z-
dc.date.issued2014en_US
dc.identifier.issn1551-3203en_US
dc.identifier.urihttp://hdl.handle.net/10553/114790-
dc.description.abstractCompetitive majority network trained by error correction (C-Mantec), a recently proposed constructive neural network algorithm that generates very compact architectures with good generalization capabilities, is implemented in a field programmable gate array (FPGA). A clear difference with most of the existing neural network implementations (most of them based on the use of the backpropagation algorithm) is that the C-Mantec automatically generates an adequate neural architecture while the training of the data is performed. All the steps involved in the implementation, including the on-chip learning phase, are fully described and a deep analysis of the results is carried on using the two sets of benchmark problems. The results show a clear increase in the computation speed in comparison to the standard personal computer (PC)-based implementation, demonstrating the usefulness of the intrinsic parallelism of FPGAs in the neurocomputational tasks and the suitability of the hardware version of the C-Mantec algorithm for its application to real-world problems. © 2012 IEEE.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Industrial Informaticsen_US
dc.sourceIEEE Transactions on Industrial Informatics [ISSN 1551-3203], v. 10(2), p. 1154-1161, (Mayo 2014)en_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject.otherCircuit complexityen_US
dc.subject.otherConstructive neural networks (CoNN)en_US
dc.subject.otherOn-chip learningen_US
dc.subject.otherThreshold networksen_US
dc.titleFPGA Implementation of the C-Mantec Neural Network Constructive Algorithmen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1109/TII.2013.2294137en_US
dc.identifier.scopus2-s2.0-84900527255-
dc.identifier.isiWOS:000336669800030-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue2-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr2,298
dc.description.sjrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-4397-2905-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOrtega Zamorano,Francisco-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

39
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

32
actualizado el 17-nov-2024

Visitas

41
actualizado el 15-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.