Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/114790
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Ortega Zamorano, Francisco | en_US |
dc.contributor.author | Jerez, JM | en_US |
dc.contributor.author | Franco, L | en_US |
dc.date.accessioned | 2022-05-18T08:52:32Z | - |
dc.date.available | 2022-05-18T08:52:32Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.issn | 1551-3203 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/114790 | - |
dc.description.abstract | Competitive majority network trained by error correction (C-Mantec), a recently proposed constructive neural network algorithm that generates very compact architectures with good generalization capabilities, is implemented in a field programmable gate array (FPGA). A clear difference with most of the existing neural network implementations (most of them based on the use of the backpropagation algorithm) is that the C-Mantec automatically generates an adequate neural architecture while the training of the data is performed. All the steps involved in the implementation, including the on-chip learning phase, are fully described and a deep analysis of the results is carried on using the two sets of benchmark problems. The results show a clear increase in the computation speed in comparison to the standard personal computer (PC)-based implementation, demonstrating the usefulness of the intrinsic parallelism of FPGAs in the neurocomputational tasks and the suitability of the hardware version of the C-Mantec algorithm for its application to real-world problems. © 2012 IEEE. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | IEEE Transactions on Industrial Informatics | en_US |
dc.source | IEEE Transactions on Industrial Informatics [ISSN 1551-3203], v. 10(2), p. 1154-1161, (Mayo 2014) | en_US |
dc.subject | 3304 Tecnología de los ordenadores | en_US |
dc.subject.other | Circuit complexity | en_US |
dc.subject.other | Constructive neural networks (CoNN) | en_US |
dc.subject.other | On-chip learning | en_US |
dc.subject.other | Threshold networks | en_US |
dc.title | FPGA Implementation of the C-Mantec Neural Network Constructive Algorithm | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | article | en_US |
dc.identifier.doi | 10.1109/TII.2013.2294137 | en_US |
dc.identifier.scopus | 2-s2.0-84900527255 | - |
dc.identifier.isi | WOS:000336669800030 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.identifier.issue | 2 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | No | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 2,298 | |
dc.description.sjrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.orcid | 0000-0002-4397-2905 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Ortega Zamorano,Francisco | - |
Colección: | Artículos |
Citas SCOPUSTM
39
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
32
actualizado el 17-nov-2024
Visitas
41
actualizado el 15-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.