Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/114790
Título: | FPGA Implementation of the C-Mantec Neural Network Constructive Algorithm | Autores/as: | Ortega Zamorano, Francisco Jerez, JM Franco, L |
Clasificación UNESCO: | 3304 Tecnología de los ordenadores | Palabras clave: | Circuit complexity Constructive neural networks (CoNN) On-chip learning Threshold networks |
Fecha de publicación: | 2014 | Publicación seriada: | IEEE Transactions on Industrial Informatics | Resumen: | Competitive majority network trained by error correction (C-Mantec), a recently proposed constructive neural network algorithm that generates very compact architectures with good generalization capabilities, is implemented in a field programmable gate array (FPGA). A clear difference with most of the existing neural network implementations (most of them based on the use of the backpropagation algorithm) is that the C-Mantec automatically generates an adequate neural architecture while the training of the data is performed. All the steps involved in the implementation, including the on-chip learning phase, are fully described and a deep analysis of the results is carried on using the two sets of benchmark problems. The results show a clear increase in the computation speed in comparison to the standard personal computer (PC)-based implementation, demonstrating the usefulness of the intrinsic parallelism of FPGAs in the neurocomputational tasks and the suitability of the hardware version of the C-Mantec algorithm for its application to real-world problems. © 2012 IEEE. | URI: | http://hdl.handle.net/10553/114790 | ISSN: | 1551-3203 | DOI: | 10.1109/TII.2013.2294137 | Fuente: | IEEE Transactions on Industrial Informatics [ISSN 1551-3203], v. 10(2), p. 1154-1161, (Mayo 2014) |
Colección: | Artículos |
Citas SCOPUSTM
40
actualizado el 26-ene-2025
Citas de WEB OF SCIENCETM
Citations
32
actualizado el 26-ene-2025
Visitas
41
actualizado el 15-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.