Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/114790
DC FieldValueLanguage
dc.contributor.authorOrtega Zamorano, Franciscoen_US
dc.contributor.authorJerez, JMen_US
dc.contributor.authorFranco, Len_US
dc.date.accessioned2022-05-18T08:52:32Z-
dc.date.available2022-05-18T08:52:32Z-
dc.date.issued2014en_US
dc.identifier.issn1551-3203en_US
dc.identifier.urihttp://hdl.handle.net/10553/114790-
dc.description.abstractCompetitive majority network trained by error correction (C-Mantec), a recently proposed constructive neural network algorithm that generates very compact architectures with good generalization capabilities, is implemented in a field programmable gate array (FPGA). A clear difference with most of the existing neural network implementations (most of them based on the use of the backpropagation algorithm) is that the C-Mantec automatically generates an adequate neural architecture while the training of the data is performed. All the steps involved in the implementation, including the on-chip learning phase, are fully described and a deep analysis of the results is carried on using the two sets of benchmark problems. The results show a clear increase in the computation speed in comparison to the standard personal computer (PC)-based implementation, demonstrating the usefulness of the intrinsic parallelism of FPGAs in the neurocomputational tasks and the suitability of the hardware version of the C-Mantec algorithm for its application to real-world problems. © 2012 IEEE.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Industrial Informaticsen_US
dc.sourceIEEE Transactions on Industrial Informatics [ISSN 1551-3203], v. 10(2), p. 1154-1161, (Mayo 2014)en_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject.otherCircuit complexityen_US
dc.subject.otherConstructive neural networks (CoNN)en_US
dc.subject.otherOn-chip learningen_US
dc.subject.otherThreshold networksen_US
dc.titleFPGA Implementation of the C-Mantec Neural Network Constructive Algorithmen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1109/TII.2013.2294137en_US
dc.identifier.scopus2-s2.0-84900527255-
dc.identifier.isiWOS:000336669800030-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue2-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr2,298
dc.description.sjrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-4397-2905-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOrtega Zamorano,Francisco-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

42
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

33
checked on Mar 30, 2025

Page view(s)

41
checked on Jun 15, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.