Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114746
Campo DC Valoridioma
dc.contributor.authorLópez-Rubio, Ezequielen_US
dc.contributor.authorPalomo, Esteban J.en_US
dc.contributor.authorOrtega Zamorano, Franciscoen_US
dc.date.accessioned2022-05-16T19:04:22Z-
dc.date.available2022-05-16T19:04:22Z-
dc.date.issued2018en_US
dc.identifier.issn0020-0255en_US
dc.identifier.urihttp://hdl.handle.net/10553/114746-
dc.description.abstractMost clustering algorithms are designed to minimize a distortion measure which quantifies how far the elements of the clusters are from their respective centroids. The assessment of the results is often carried out with the help of cluster quality measures which take into account the compactness and separation of the clusters. However, these measures are not amenable to optimization because they are not differentiable with respect to the centroids even for a given set of clusters. Here we propose a differentiable cluster quality measure, and an associated clustering algorithm to optimize it. It turns out that the standard k-means algorithm is a special case of our method. Experimental results are reported with both synthetic and real datasets, which demonstrate the performance of our approach with respect to several standard quantitative measures.en_US
dc.languageengen_US
dc.relation.ispartofInformation Sciencesen_US
dc.sourceInformation Sciences [ISSN 0020-0255], v. 436-437, p. 31-55, (Abril 2018)en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherUnsupervised learningen_US
dc.subject.otherClusteringen_US
dc.subject.otherCluster quality measuresen_US
dc.subject.otherK-meansen_US
dc.titleUnsupervised learning by cluster quality optimizationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1016/j.ins.2018.01.007en_US
dc.identifier.scopus2-s2.0-85041483135-
dc.identifier.isiWOS:000427311400003-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage55en_US
dc.description.firstpage31en_US
dc.relation.volume436–437en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,62
dc.description.jcr5,524
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-4397-2905-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOrtega Zamorano,Francisco-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

20
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

17
actualizado el 24-nov-2024

Visitas

89
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.