Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/114746
Título: | Unsupervised learning by cluster quality optimization | Autores/as: | López-Rubio, Ezequiel Palomo, Esteban J. Ortega Zamorano, Francisco |
Clasificación UNESCO: | 1203 Ciencia de los ordenadores | Palabras clave: | Unsupervised learning Clustering Cluster quality measures K-means |
Fecha de publicación: | 2018 | Publicación seriada: | Information Sciences | Resumen: | Most clustering algorithms are designed to minimize a distortion measure which quantifies how far the elements of the clusters are from their respective centroids. The assessment of the results is often carried out with the help of cluster quality measures which take into account the compactness and separation of the clusters. However, these measures are not amenable to optimization because they are not differentiable with respect to the centroids even for a given set of clusters. Here we propose a differentiable cluster quality measure, and an associated clustering algorithm to optimize it. It turns out that the standard k-means algorithm is a special case of our method. Experimental results are reported with both synthetic and real datasets, which demonstrate the performance of our approach with respect to several standard quantitative measures. | URI: | http://hdl.handle.net/10553/114746 | ISSN: | 0020-0255 | DOI: | 10.1016/j.ins.2018.01.007 | Fuente: | Information Sciences [ISSN 0020-0255], v. 436-437, p. 31-55, (Abril 2018) |
Colección: | Artículos |
Citas SCOPUSTM
20
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
17
actualizado el 17-nov-2024
Visitas
89
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.