Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114746
Título: Unsupervised learning by cluster quality optimization
Autores/as: López-Rubio, Ezequiel
Palomo, Esteban J.
Ortega Zamorano, Francisco 
Clasificación UNESCO: 1203 Ciencia de los ordenadores
Palabras clave: Unsupervised learning
Clustering
Cluster quality measures
K-means
Fecha de publicación: 2018
Publicación seriada: Information Sciences 
Resumen: Most clustering algorithms are designed to minimize a distortion measure which quantifies how far the elements of the clusters are from their respective centroids. The assessment of the results is often carried out with the help of cluster quality measures which take into account the compactness and separation of the clusters. However, these measures are not amenable to optimization because they are not differentiable with respect to the centroids even for a given set of clusters. Here we propose a differentiable cluster quality measure, and an associated clustering algorithm to optimize it. It turns out that the standard k-means algorithm is a special case of our method. Experimental results are reported with both synthetic and real datasets, which demonstrate the performance of our approach with respect to several standard quantitative measures.
URI: http://hdl.handle.net/10553/114746
ISSN: 0020-0255
DOI: 10.1016/j.ins.2018.01.007
Fuente: Information Sciences [ISSN 0020-0255], v. 436-437, p. 31-55, (Abril 2018)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.