Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/114449
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Velázquez Medina, Sergio Leandro | en_US |
dc.contributor.author | Portero-Ajenjo, Ulises | en_US |
dc.date.accessioned | 2022-04-27T13:27:03Z | - |
dc.date.available | 2022-04-27T13:27:03Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.isbn | 978-1-78985-213-4 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/114449 | - |
dc.description.abstract | Due to the low dispatchability of wind power, the massive integration of this energy source in electrical systems requires short-term and very short-term wind farm power output forecasting models to be as efficient and stable as possible. A study is conducted in the present paper of potential improvements to the performance of artificial neural network (ANN) models in terms of efficiency and stability. Generally, current ANN models have been developed by considering exclusively the meteorological information of the wind farm reference station, in addition to selecting a fixed number of time periods prior to the forecasting. In this respect, new ANN models are proposed in this paper, which are developed by: varying the number of prior 1-h periods (periods prior to the prediction hour) chosen for the input layer parameters; and/or incorporating in the input layers data from a second weather station in addition to the wind farm reference station. It has been found that the model performance is always improved when data from a second weather station are incorporated. The mean absolute relative error (MARE) of the new models is reduced by up to 7.5%. Furthermore, the longer the forecast horizon, the greater the degree of improvement. | en_US |
dc.language | eng | en_US |
dc.publisher | IntechOpen | en_US |
dc.source | Theory of Complexity / Edited by Ricardo López-Ruiz. Chapter 5 | en_US |
dc.subject | 332205 Fuentes no convencionales de energía | en_US |
dc.subject | 330609 Transmisión y distribución | en_US |
dc.subject | 3306 Ingeniería y tecnología eléctricas | en_US |
dc.subject.other | Artificial neural networks (ANN) | en_US |
dc.subject.other | Wind power forecasting | en_US |
dc.subject.other | Model performance | en_US |
dc.subject.other | Wind farm power output | en_US |
dc.title | Optimization of the ANNs Models Performance in the Short-Term Forecasting of the Wind Power of Wind Farms | en_US |
dc.type | info:eu-repo/semantics/bookPart | en_US |
dc.type | Book part | en_US |
dc.identifier.doi | 10.5772/intechopen.97190 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Capítulo de libro | en_US |
dc.description.numberofpages | 16 | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR Group for the Research on Renewable Energy Systems | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.orcid | 0000-0002-0392-6605 | - |
crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
crisitem.author.fullName | Velázquez Medina, Sergio Leandro | - |
Appears in Collections: | Capítulo de libro |
Page view(s)
69
checked on Jan 18, 2025
Download(s)
55
checked on Jan 18, 2025
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.