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Abstract

Due to the low dispatchability of wind power, the massive integration of this 
energy source in electrical systems requires short-term and very short-term wind 
farm power output forecasting models to be as efficient and stable as possible. A 
study is conducted in the present paper of potential improvements to the perfor-
mance of artificial neural network (ANN) models in terms of efficiency and stabil-
ity. Generally, current ANN models have been developed by considering exclusively 
the meteorological information of the wind farm reference station, in addition to 
selecting a fixed number of time periods prior to the forecasting. In this respect, 
new ANN models are proposed in this paper, which are developed by: varying the 
number of prior 1-h periods (periods prior to the prediction hour) chosen for the 
input layer parameters; and/or incorporating in the input layers data from a second 
weather station in addition to the wind farm reference station. It has been found 
that the model performance is always improved when data from a second weather 
station are incorporated. The mean absolute relative error (MARE) of the new 
models is reduced by up to 7.5%. Furthermore, the longer the forecast horizon, the 
greater the degree of improvement.

Keywords: Artificial neural networks (ANN), wind power forecasting,  
model performance, wind farm power output

1. Introduction

A major impediment to the large-scale integration of wind power in electrical 
systems is the low dispatchability of this energy source. The effects of variations 
in wind speed, and hence wind power, are not only observed on a year-to-year or 
season-to-season scale, but also on a within-day scale [1–5]. A strategy that can be 
employed to improve wind energy integration in electrical systems is to optimize 
the performance of short-term forecasting models of wind farm power production. 
This strategy is the focus of the present study.

The direct consequences of the low dispatchability of wind power on electrical 
systems can be both technical and economic. Supply and demand adjustments in 
electrical systems are made 24–36 hours in advance. Any mismatches that might 
arise between supply and demand forecasting are subsequently corrected on the day 
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itself [6–9]. The mismatch correction as the result of imprecise forecasting entails 
additional costs for the electrical system [7, 10]. These extra costs are generally 
absorbed by the end user and/or electricity producer, with the latter thus burdened 
by an additional production cost.

Other strategies have been used to minimize the problem described above. One 
involves the direct estimation of the net energy demand of the electrical system, 
which can be understood as the difference between total demand and the energy 
generated by renewable sources. In [11–12], a model is proposed for direct forecast-
ing of net energy demand which is validated with data from different electrical 
systems. Reference [13] compares a direct forecasting model of net energy demand 
with different indirect forecasting strategies.

In the electricity market, the matching of supply and demand is generally 
performed for 1 h periods. For this reason, in an analysis of model forecasting 
performance, it is very important to evaluate the error for 1 h periods, to study 
model performance for different forecast horizons, and to evaluate the stability of 
the error in the time horizon in which the forecasting is made.

Numerous studies can be found in the literature on the development of 
short-term forecasting models. Different techniques and approaches have been 
analyzed and proposed. In most cases, good performances for specific forecast-
ing horizons have been obtained. The techniques that have been used range from 
simple heuristics [14–20] to systems which employ artificial intelligence [21–34]. 
The study developed in the present paper focuses on models which employ the 
technique of artificial neural networks (ANNs) to forecast wind farm power 
production [21, 22, 26], [27, 29–31, 33, 34].

In [34], the proposed forecasting model is developed on the basis of improve-
ments made to the kriging interpolation method and empirical mode decomposi-
tion, using a new forecasting engine based on neural networks. To analyze the 
results, the mean absolute percentage error (MAPE), normalized mean absolute 
error (NMAE) and normalized root mean square error (NRMSE) metrics are 
used, calculated as the mean value in the forecasting horizons (24 h and 6 h). As 
in [34], models have been developed for different forecasting horizons [26, 27, 33]. 
However, an extensive analysis of the literature conducted by the authors of the 
present study has found that the models developed to date only consider a specific 
and fixed number of prior 1-h periods (periods prior to the prediction hour). It 
should also be noted that, in all the studies consulted, the meteorological data used 
as input layer parameters correspond exclusively to the reference weather station 
(WS) of the wind farm. In no case is the meteorological information used from 
additional WSs other than the reference WS of the wind farm. Finally, the metrics 
used to assess model performance in all these studies are obtained as the mean value 
of the forecasting time horizon. As previously stated, given that the matching of 
supply and demand in the electricity market is performed for 1 h periods, there is an 
additional interest in the study of the possible variation of the metrics within that 
time frame for each of the hourly periods.

The present study considers possible improvements, in terms of efficiency and 
stability, to the performance of ANN-based models for wind power forecasting. 
For this purpose, an analysis is made on the improvement of model performance 
of: ① varying the number of prior 1-h periods (periods prior to the forecasting 
hour) chosen for the ANN input layer parameters; and/or ② incorporating in the 
input layer data from a second weather station in addition to the data from the wind 
farm reference station. The analysis is undertaken for a wide range of forecasting 
horizons. Based on the above, a total of up to 175 ANN models are generated, and 
the results are compared by applying the models to two actual wind farms located in 
the Canary Islands, Spain.
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The aim of this paper is to make the following original contributions to the 
scientific body of knowledge:

1. A study of improvement in the efficiency and stability of ANN models of 
varying the number of 1-h prior periods (periods prior to the prediction hour 
and hereinafter referred to as n), chosen for incorporation of the input layer 
parameters.

2. A study of improvement in ANN model performance of the additional incor-
poration in the input layer of meteorological data from WSs other than the 
wind farm reference station.

Both effects are analyzed for different forecasting horizons.

2. Methodology

Figure 1 shows the methodology followed in the present study for the implemen-
tation of different ANN models generated. It shows the combination of parameters 
which are considered for the input and output layer neurons in the generation process 
of different ANN models. The various parameters are defined as follows: ti is the time 
instant on the basis of which the forecast is made, and Vti, Dti and Pti are the wind 
speed, wind direction and the wind farm power output, respectively, in the instant ti.

The following data are used in all the models: historical wind speed and direction 
data obtained from the wind farm reference WS, and historical power production 

Figure 1. 
Methodology to obtain forecasting models.
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data of the wind farm. In some models, as will subsequently be explained, the 
historical wind speed and direction data of a second WS are used in addition to the 
data of the wind farm reference station.

The output layer is comprised of the power output values for different forecasting 
horizons.

The number of hours prior to the prediction hour, n, and the length of the 
forecasting horizon that is being forecasted, m, are variable.

2.1 Architecture of ANN employed

The ANNs used to generate the models are comprised of three layers with 
feedforward connections. For this purpose, multi-layer perceptron (MLP) topolo-
gies have been used [35, 36]. In order not to increase the length of the training 
period excessively, a single layer of hidden neurons is used. This architecture has 
been shown to have the capacity to satisfactorily approximate any continuous 
transformation [35, 36]. Various prior tests have been carried out to choose the 
number of hidden neurons, varying the number of input signals. It is found that 
using more than 20 neurons merely increases the time required for model training 
and validation without improving the results. It is therefore decided to use a total of 
20 neurons in the hidden layer.

The architectures are trained using the backpropagation algorithm with sigmoi-
dal activation function [31, 32]. The Levenberg–Marquardt algorithm is used to 
minimize the mean square error committed in the learning process [35, 37].

To carry out the training and validation stages used to generate the model and 
the test stage of the network, the available annual data series for each parameter 
are divided into random and different subsets (Figure 1). The proportion of data 
selected for each of the stages is 75%, 15% and 10%, respectively.

As can be seen in Figure 1, the training and validation data subsets are used to 
generate the model. The test data subset is used to evaluate the performance of the 
model generated.

The 10-fold cross-validation technique is used for the process of model genera-
tion and evaluation. The test stage data subset is used in each of the iterations. The 
error assigned to each model is the arithmetic mean of those obtained in the test 
stage for each of the iterations.

The various studies are performed using neural network tools available in the 
MATLAB software package.

2.2 Study cases

1. Case A: Comparison of efficiency and stability of different ANN models obtained 
when varying the number of periods prior to the prediction hour (n) chosen for 
incorporation of different parameters in the input layer

The number of prior periods, n, and the number of forecast horizon periods, m, 
are study variables. The different combinations of n and m generate different mod-
els whose performances will be analyzed. For Case A, both n and m are permitted to 
take the values 3, 6, 12, 24 and 36. That is to say, five different models are generated 
for each forecasting horizon, and thus the total number of generated models is 25. 
This methodology is applied to the two wind farms of the study.

To study the models in terms of the stability of forecasting, the results obtained 
for each of the periods within the forecasting horizon, m, are compared.

Figure 2 shows the structure of the neural network for this study case. The num-
ber of neurons of the output layer depends on the forecasting horizon, and will thus 
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fluctuate between 3 and 36 neurons. For the input layer, the number of neurons will 
also vary depending on the value of n, from 9 (n = 3) to 108 (n = 36) neurons.

2. Case B: Comparison of performance of ANN models when additionally incorpo-
rating in the input layer the data from a second WS other than the reference station 
of wind farm.

For Case B, both n and m could take the same values as indicated for Case A.
Figure 3 shows the structure of the neural network for the generation of models 

in Case B.
In Case B, the input layer of the ANN incorporates the data from a second WS in 

addition to that of the reference WS of the wind farm. To generate different models, 

Figure 2. 
Schematic representation of neural network for generation of forecasting models in case A.

Figure 3. 
Schematic representation of neural network for generation of forecasting models in case B.
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the data of the reference WS of each wind farm (WS1 and WS9) are combined 
with the data of each of the seven other weather stations, WS-2 to WS-8 (Table 1). 
Therefore, for Case B, 175 different models are generated (25 × 7). After applying 
these models to each wind farm, their results are then compared.

The number of neurons in the input layer also varies, depending on the value of 
n, from 15 (n = 3) to 180 (n = 36).

The variation in the number of output layer neurons is the same as in Case A.

2.3 Metrics used to compare the different models

To compare the performance of the different models generated for Cases A and 
B, metrics (1) and (2) were used:
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where: MARE is the mean absolute relative error for the forecast horizon; T is 
the number of data in the test stage (see Figure 1); r = T-m-n; MAREj is the mean 
absolute relative error for the forecasting period j; Pj and 

jP are the actual and 
estimated wind farm power output in the forecasting period j, respectively; R is the 
mean value of Pearson’s coefficient of correlation between the estimated and actual 
wind farm power output for the forecast horizon; and Rj is the mean Pearson 
correlation coefficient between the estimated and actual wind farm power output 
values for the forecasting period j.

Code Height (magl) Latitude

(north)

Longitude

(west)

Altitude

(m)

WS1 40 27°54′08” 15°23′17” 16

WS2 10 27°51′36” 15°23′13” 3

WS3 10 28°27′10” 13°51′54” 24

WS4 10 28°57′07” 13°36′00” 10

WS5 13 28°01′36” 15°23′16” 5

WS6 10 28°07′30” 15°40′37” 472

WS7 10 27°56′08” 15°25′24” 186

WS8 10 28°02′35” 16°34′16” 51

WS9 40 29°05′47” 13°30′21” 457

Table 1. 
Weather stations used in study.
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The combined use of the two previous metrics is considered sufficient for 
the evaluation of the performance of the models and they have been widely used 
[38–41]. Alternatively, for the evaluation of future models, combinations of other 
metrics could be used [42]. For example, a combination of the Normalized Mean 
Absolute Error (NMAE) and the Index of Agreement (IoA) could be used.

3. Materials

The meteorological data (wind speed and direction) recorded by nine WSs 
located in four of the seven islands of the Canary Archipelago (Table 1) are used 
in this study. The mean hourly wind speed and direction data from 2008 are 
used in all cases. The heights of the WSs are expressed in metres above ground 
level (magl).

To validate and compare the results obtained with the different models, infor-
mation corresponding to two wind farms (WF) located on two of the seven islands 
of the Canary Archipelago is used. Tables 2 and 3 shows the geographic coordinates 
of the wind turbines (WT) of the two wind farms (WF1 and WF2). The hourly 
wind farm power output data for 2008 are used for this study.

Stations WS1 and WS9 (Table 1) are the reference weather stations of wind 
farms WF1 and WF2, respectively. The WS1 and WS9 data and the wind power pro-
duction values are provided by the respective owners of the wind farms. The data 
from the seven additional WSs used in the study are provided by the Canary Islands 
Technological Institute (Spanish initials: ITC), a publicly owned R&D company run 
by the Regional Government of the Canary Islands and Spain’s State Meteorological 
Agency (Spanish initials: AEMET).

Table 4 shows the results obtained for the coefficients of linear correlation (3) 
between the mean hourly wind speeds of the different WSs.
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where CC is the Pearson’s coefficient of correlation between the wind speeds of 
two WSs; NG is the total number of data of the series. In this case, as a series of 
hourly data equivalent to one year is available, NG is equal to 8760. Vi and iV

′  are 

the speeds at instant i of the two WSs subject to correlation; V  and V ′  are the 
mean wind speeds of the two WSs subject to correlation for the available data series.

Code x (m) y (m) z (m)

WF1-WT1 461764 3086314 3

WF1-WT2 461839 3086301 1

WF1-WT3 461681 3086067 5

WF1-WT4 461753 3086038 2

Table 2. 
Geographic coordinates of wind turbines in WF1.
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No. Coefficient of linear correlation

WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 WS9

WS1 1.00 0.84 0.27 0.34 0.74 0.73 0.77 0.50 0.51

WS2 0.81 1.00 0.19 0.25 0.79 0.74 0.87 0.44 0.54

WS3 0.27 0.19 1.00 0.70 0.16 0.16 0.18 0.16 0.11

WS4 0.34 0.25 0.70 1.00 0.20 0.21 0.22 0.20 0.11

WS5 0.74 0.79 0.16 0.20 1.00 0.49 0.78 0.21 0.44

WS6 0.73 0.74 0.16 0.21 0.49 1.00 0.61 0.62 0.54

WS7 0.77 0.87 0.18 0.22 0.78 0.61 1.00 0.39 0.46

WS8 0.50 0.44 0.16 0.20 0.21 0.62 0.39 1.00 0.35

WS9 0.51 0.54 0.11 0.11 0.44 0.54 0.46 0.35 1.00

Table 4. 
Coefficient of linear correlation between wind speeds of different weather stations in 2008.

4. Results and discussion

The discussion of the results centres on the two cases proposed in the methodol-
ogy. For the various figures corresponding to the results, t-3 indicates that 2 periods 
prior to the forecasting period are chosen in addition to the forecasting period (ti, 
ti-1, ti-2), and t + 3 indicates a forecasting horizon of 3 periods, ti + 1, ti + 2, ti + 3, 
starting from the period for which the forecasting is being made, and so on for all 
combinations.

4.1 Discussion of results for case A

Figures 4 and 5 show the results for the MARE and R metrics for the 25 gener-
ated models. In practically all cases, the MARE and R values improve as n increases. 
The only exception is for case t-36 in comparison with t-24, where the improvement 
is minimal or not observed. In addition, the degree of improvement increases as m 
increases (t + 12, t + 24 and t + 36).

Code x (m) y (m) z (m)

WF2-WT1 645043 3219819 486

WF2-WT2 645147 3219752 478

WF2-WT3 645186 3219638 473

WF2-WT4 645264 3219548 464

WF2-WT5 645333 3219462 456

WF2-WT6 645403 3219369 448

WF2-WT7 645406 3219213 440

WF2-WT8 645554 3219194 425

WF2-WT9 645664 3219133 405

Table 3. 
Geographic coordinates of wind turbines in WF2.
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For the forecasting horizons t + 12, t + 24, t + 36, the maximum improvements 
obtained for MARE between the values for n = 3 and n = 36, are 13.3%, 11.2% and 
10%, respectively. For the same cases but for R, the corresponding improvements 
are 7.9%, 8.9% and 9.2%, respectively.

To study the forecasting stability, an analysis has been made of the specific 
case of forecasting horizon t + 24, in which the number of periods to forecast is 
significant. Figure 6 shows, for this specific case and differentiated according to n, 
the results of the variation of the relative error in the different forecasting periods, 
MAREj. It can be seen how the relative error stabilizes earlier as n increases.

The forecasting stability is analyzed for all the forecasting horizons (Figure 7). 
This analysis is made on the basis of the standard deviation of relative error in the 
forecasting horizon:.
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where SDV is the mean standard deviation of the MARE for a forecasting time 
horizon m.

It can be seen in Figure 7 that for all the forecasting horizons, the SDV/MARE 
value decreases significantly as the number of prior hours n increases. This signifi-
cant improvement in the stability of models is observed even for the lowest fore-
casting horizons. Only for the particular case of forecasting horizon t + 3 and when 
the horizon passes from t-24 to t-36, no improvement is observed.

Figure 4. 
MARE results in case A.

Figure 5. 
R results in case A.
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Figure 6. 
MARE variation of different prediction periods: Case of a forecasting horizon t + 24.

Figure 7. 
Stability of relative error SDV in forecasting horizon.

By way of example, we will now proceed to analyze the specific cases of the 
forecasting models t + 12 and t + 24. To date, in the ANN models studied in the 
literature, the number of prior periods n chosen to generate the models has 
always been fixed. Assume that the n chosen for a standard model is 12. In this 
case, the MARE value is 0.2866 for the t + 12 model and 0.3382 for the t + 24 
model (Figure 4). The corresponding values for the stability of the relative error 
are 17.4% and 14.4% (Figure 7), respectively. According to the analysis made 
with Case A, the performance of these models can be improved by choosing a 
higher value of n. If n is 24, the MARE values decrease to 0.2783 and 0.3206, 
respectively (Figure 4). Similarly, for an n of 24, the stability of the relative 
error in the forecasting improves to the values of 15.8% and 12.8%, respectively 
(Figure 7).

4.2 Discussion of results for case B

For the analysis of Case B, the MARE and R results of this case, with two WSs, 
are compared with those of Case A, with one WS. For this purpose, (5) and (6) 
are used.
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It can be seen in Figures 8 and 9 how all the models generated for Case B obtain 
an additional improvement in performance to that already obtained for Case A. 
This additional improvement is in relation to ANN models developed to date which 
always use exclusive data from a single WS.

It can also be observed that, in general, the degree of improvement increases 
as m increases. This degree of improvement slows down for forecasting horizons 
longer than 24 hours.

The maximum additional improvements in model performance are seen in fore-
casting horizons t + 24 and t + 36 (7.5% and 5.5% for MARE and 3.7% and 5.4% for R, 
respectively). Even for the shortest forecasting horizons, t + 3 and t + 6, the maxi-
mum improvements in the MARE metric are significant (3% and 4.9%, respectively).

Continuing with the specific example proposed in the analysis of results for Case 
A (using models t + 12 and t + 24), Figure 10 shows the additional improvements 
in performance that can be obtained through the incorporation in the input layer of 
data from a second WS (Case B).

Figure 8. 
Comparison of MARE results for cases A and B.

Figure 9. 
Comparison of results obtained for R for cases A and B.
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Points A and B represent the error obtained when using a fixed n of 12 and 
only data from the reference WS of the wind farm. Points A1 and B1 represent the 
improvements obtained in the error when n is increased to 24. Points A2 and B2 
represent the additional improvements obtained in the error when, in Case B, the 
data from a second WS are incorporated in the input layer of the ANN. For the two 
specific examples given, the overall improvements obtained by combining Cases A 
and B amount to 8.78% and 6.04%, respectively.

5. Conclusion

A series of interesting conclusions can be drawn from the results of this study 
with respect to possible improvements in the performance of ANN models for the 
short-term forecasting of wind farm power output.

The performance of the new ANN models generated for each forecast horizon 
improves with the increase in the number of prior 1-h periods (periods prior to the 
prediction hour), n, chosen for incorporation of the input layer parameters. For the 
forecasting horizons t + 12, t + 24 and t + 36, the maximum improvements obtained 
for MARE are 13.3%, 11.2% and 10%, respectively; and for R, the corresponding 
improvements are 7.9%, 8.9% and 9.2%, respectively.

A study is also made of the stability of the mean relative error for the different 
forecasting periods and for each forecasting horizon m. As n increases the stability 
of the error in the forecasting improves significantly for all forecasting horizons.

Additionally, in all the new models generated, the incorporation in the input 
layer of ANN of meteorological data from a second WS also improves the perfor-
mance of the traditional models generated exclusively with data from the reference 
station of the wind farm. In general terms, the degree of improvement in model 
performance increases with m, attaining improvements in the MARE and R of up to 
7.5% and 5.4%, respectively.

In view of the conclusions drawn from the present study, the original contribu-
tions described in this manuscript could be implemented in existing ANN models to 
optimize their results.
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