Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/114223
DC FieldValueLanguage
dc.contributor.authorCaba, Juliánen_US
dc.contributor.authorDíaz Martín, Maríaen_US
dc.contributor.authorBarba Romero, Jesúsen_US
dc.contributor.authorGuerra Hernández, Raúl Celestinoen_US
dc.contributor.authorEscolar, Soledaden_US
dc.contributor.authorLópez Suárez, Sebastiánen_US
dc.date.accessioned2022-03-28T12:43:28Z-
dc.date.available2022-03-28T12:43:28Z-
dc.date.issued2022en_US
dc.identifier.issn1939-1404en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/114223-
dc.description.abstractOnboard data processing for on-the-fly decision-making applications has recently gained momentum in the field of remote sensing. In this context, hyperspectral anomaly detection has received a special attention since its main purpose lays on the identification of abnormal events in an unsupervised manner. Nevertheless, onboard real-time hyperspectral image processing still poses several challenges before becoming a reality. This is why there is an emerging trend towards the development of hardware-friendly algorithmic solutions embedded in reconfigurable devices. In this context, this work contributes with a hardware architecture that ensures a progressive line processing in time-sensitive applications limited by the scarcity of hardware resources. In this sense, we have implemented the state-of-the-art HW-LbL-FAD detector on a reconfigurable hardware for a real-time performance. Specifically, we have selected a cost-optimized FPGA (ZC7Z020-CLG484) to implement our solution whose results draw up a good trade-off between the following three features: time performance, energy consumption and cost. The experimental results indicate our hardware component is able to process hyperspectral images of 825x1024 pixels and 160 bands in 0.51 seconds with a power-budget of 1.3 watts and a device cost around 150 C. Regarding detection performance, the HW-LbL-FAD algorithm outperforms other state-of-the-art algorithms.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensingen_US
dc.sourceIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [ISSN 1939-1404], v. 15, p. 2379-2393, (Enero 2022)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherAnomaly Detectionen_US
dc.subject.otherFPGAen_US
dc.subject.otherHigh-Level Synthesisen_US
dc.subject.otherHyperspectral Imagingen_US
dc.subject.otherLine-By-Line Performanceen_US
dc.subject.otherLow-Poweren_US
dc.subject.otherReal-Timeen_US
dc.titleLow-power hyperspectral anomaly detector implementation in cost-optimized FPGA devicesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/JSTARS.2022.3157740en_US
dc.identifier.scopus85126315892-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid55961635100-
dc.contributor.authorscopusid57192832495-
dc.contributor.authorscopusid13006950500-
dc.contributor.authorscopusid56333613300-
dc.contributor.authorscopusid8728064400-
dc.contributor.authorscopusid57187722000-
dc.identifier.eissn2151-1535-
dc.description.lastpage2393en_US
dc.description.firstpage2379en_US
dc.relation.volume15en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages15en_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,264
dc.description.jcr5,5
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,6
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-2670-8149-
crisitem.author.orcid0000-0002-4303-3051-
crisitem.author.orcid0000-0002-2360-6721-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameDíaz Martín,María-
crisitem.author.fullNameGuerra Hernández,Raúl Celestino-
crisitem.author.fullNameLópez Suárez, Sebastián Miguel-
Appears in Collections:Artículos
Thumbnail
pdf
Adobe PDF (4,54 MB)
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

9
checked on Nov 24, 2024

Page view(s)

32
checked on Jun 10, 2023

Download(s)

19
checked on Jun 10, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.