Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/113705
DC FieldValueLanguage
dc.contributor.authorFreire Obregón, David Sebastiánen_US
dc.contributor.authorBarra, Pen_US
dc.contributor.authorCastrillón Santana, Modesto Fernandoen_US
dc.contributor.authorDe Marsico, Men_US
dc.date.accessioned2022-02-10T08:40:26Z-
dc.date.available2022-02-10T08:40:26Z-
dc.date.issued2022en_US
dc.identifier.issn0932-8092en_US
dc.identifier.urihttp://hdl.handle.net/10553/113705-
dc.description.abstractAccording to the Wall Street Journal, one billion surveillance cameras will be deployed around the world by 2021. This amount of information can be hardly managed by humans. Using a Inflated 3D ConvNet as backbone, this paper introduces a novel automatic violence detection approach that outperforms state-of-the-art existing proposals. Most of those proposals consider a pre-processing step to only focus on some regions of interest in the scene, i.e., those actually containing a human subject. In this regard, this paper also reports the results of an extensive analysis on whether and how the context can affect or not the adopted classifier performance. The experiments show that context-free footage yields substantial deterioration of the classifier performance (2% to 5%) on publicly available datasets. However, they also demonstrate that performance stabilizes in context-free settings, no matter the level of context restriction applied. Finally, a cross-dataset experiment investigates the generalizability of results obtained in a single-collection experiment (same dataset used for training and testing) to cross-collection settings (different datasets used for training and testing).en_US
dc.languageengen_US
dc.relation.ispartofMachine Vision and Applicationsen_US
dc.sourceMachine Vision and Applications [ISSN 0932-8092], v. 33(1), (Enero 2022)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherViolence detectionen_US
dc.subject.otherPeople trackingen_US
dc.subject.otherI3D modelen_US
dc.subject.otherContext analysisen_US
dc.subject.otherTransfer learningen_US
dc.titleInflated 3D ConvNet context analysis for violence detectionen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1007/s00138-021-01264-9en_US
dc.identifier.scopus2-s2.0-85122097737-
dc.identifier.isiWOS:000736774900001-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0002-7692-0626-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue1-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages13en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,591
dc.description.jcr3,3
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Appears in Collections:Artículos
Adobe PDF (1,8 MB)
Show simple item record

SCOPUSTM   
Citations

34
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

23
checked on Nov 24, 2024

Page view(s)

84
checked on Aug 10, 2024

Download(s)

79
checked on Aug 10, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.