Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/113676
DC FieldValueLanguage
dc.contributor.authorCacereño Ibáñez, Andrésen_US
dc.contributor.authorGreiner Sánchez, David Juanen_US
dc.contributor.authorGalvan, BJen_US
dc.date.accessioned2022-02-08T12:34:31Z-
dc.date.available2022-02-08T12:34:31Z-
dc.date.issued2021en_US
dc.identifier.issn2227-7390en_US
dc.identifier.urihttp://hdl.handle.net/10553/113676-
dc.description.abstractMaximising profit is an important target for industries in a competitive world and it is possible to achieve this by improving the system availability. Engineers have employed many techniques to improve systems availability, such as adding redundant devices or scheduling maintenance strategies. However, the idea of using such techniques simultaneously has not received enough attention. The authors of the present paper recently studied the simultaneous optimisation of system design and maintenance strategy in order to achieve both maximum availability and minimum cost: the Non-dominated Sorting Genetic Algorithm II (NSGA-II) was coupled with Discrete Event Simulation in a real encoding environment in order to achieve a set of non-dominated solutions. In this work, that study is extended and a thorough exploration using the above-mentioned Multi-objective Evolutionary Algorithm is developed using an industrial case study, paying attention to the possible impact on solutions as a result of different encodings, parameter configurations and chromosome lengths, which affect the accuracy levels when scheduling preventive maintenance. Non-significant differences were observed in the experimental results, which raises interesting conclusions regarding flexibility in the preventive maintenance strategy.en_US
dc.languageengen_US
dc.relation.ispartofMathematicsen_US
dc.sourceMathematics [ISSN 2227-7390], v. 9(15), 1751en_US
dc.subject120302 Lenguajes algorítmicosen_US
dc.subject331004 Ingeniería de mantenimientoen_US
dc.subject.otherMulti-objective evolutionary algorithmsen_US
dc.subject.otherAvailabilityen_US
dc.subject.otherDesignen_US
dc.subject.otherPreventive maintenance schedulingen_US
dc.subject.otherEncodingen_US
dc.subject.otherAccuracy levelsen_US
dc.titleMulti-Objective Optimum Design and Maintenance of Safety Systems: An In-Depth Comparison Study Including Encoding and Scheduling Aspects with NSGA-IIen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.3390/math9151751en_US
dc.identifier.scopus2-s2.0-85111578190-
dc.identifier.isiWOS:000682046800001-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue15-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,495
dc.description.jcr2,592
dc.description.sjrqQ2
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,4
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0002-3947-185X-
crisitem.author.orcid0000-0002-4132-7144-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameCacereño Ibáñez, Andrés-
crisitem.author.fullNameGreiner Sánchez, David Juan-
Appears in Collections:Artículos
Adobe PDF (614,75 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.