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Abstract: Maximising profit is an important target for industries in a competitive world and
it is possible to achieve this by improving the system availability. Engineers have employed
many techniques to improve systems availability, such as adding redundant devices or scheduling
maintenance strategies. However, the idea of using such techniques simultaneously has not received
enough attention. The authors of the present paper recently studied the simultaneous optimisation
of system design and maintenance strategy in order to achieve both maximum availability and
minimum cost: the Non-dominated Sorting Genetic Algorithm II (NSGA-II) was coupled with
Discrete Event Simulation in a real encoding environment in order to achieve a set of non-dominated
solutions. In this work, that study is extended and a thorough exploration using the above-mentioned
Multi-objective Evolutionary Algorithm is developed using an industrial case study, paying attention
to the possible impact on solutions as a result of different encodings, parameter configurations and
chromosome lengths, which affect the accuracy levels when scheduling preventive maintenance.
Non-significant differences were observed in the experimental results, which raises interesting
conclusions regarding flexibility in the preventive maintenance strategy.

Keywords: multi-objective evolutionary algorithms; availability; design; preventive maintenance
scheduling; encoding; accuracy levels

1. Introduction

System Reliability (R(t)) can be defined as the probability of failure free operation
under specified conditions over an intended period of time [1]. System Maintainability
(M(t)) can be defined as the probability of being restored to a fully operational condition
within a specific period of time [2]. These definitions lead to interest both in time taken
for a system to failure (Time To Failure) and in time taken to repair the system (Time To
Repair). System Availability (A(t)) can be defined as the fraction of the total time in which
systems are able to perform their required function [2]. The concepts of Reliability and
Maintainability are related to Availability in order to define the way in which the system is
able to achieve the function for which it was designed, over a period of time. Therefore,
whereas Reliability is a concept related to non-repairable systems, Availability is a concept
related to repairable systems because it encompasses the complete failure-recovery cycle
over the mission time. From above, it can be seen that repairable systems operate during a
certain period of time (Time To Failure) until a failure occurs. After that, a period of time is
needed to recover the system operating status (Time To Repair). This creates an interest in
Time To Failure and Time To Repair, which can be modelled as random variables that can
be represented by continuous probability distributions.

Optimisation through Evolutionary Algorithms is useful when complex problems
have to be solved; that is, problems in which the number of potential solutions is usually
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high and whilst achieving the best solution is a daunting task and achieving the best
solution can be extremely difficult, achieving at least a good solution (if not exactly the best)
can be a manageable task [3]. Typical reliability optimisation problems have considered the
possibility of maximising the system Availability. There are many techniques commonly
used to improve it and the present paper focuses on two of them. On the one hand,
modifying the structural design through redundancies improves the system Availability.
A redundancy is a component added to a subsystem from a series-parallel configuration
in order to increase the number of alternative paths [4]. On the other hand, an overall
improvement of system availability is possible through preventive maintenance [5]. The
unavailability of a system due to its failure can occur at any time, which necessitates a
significant effort to recover the operating state. Conversely, a programmed shutdown to
perform a preventive maintenance task represents a controlled situation with materials,
spares and human teams available.

These techniques were jointly explored by the authors of the present paper preliminarily
in [6], coupling Multi-objective EvolutionaryAlgorithm and Discrete Simulation and
dealing with the joint optimisation of systems design (considering whether or not to
include redundant devices) and their preventive maintenance strategy (choosing optimum
periodical preventive maintenance times in relation to each system device). This allowed
necessary preventive maintenance activities to be carried out. The system Availability and
operation Cost were the objectives to maximise and minimise, respectively. A simulation
approach was used in which each solution proposed by the Multi-objective Evolutionary
Algorithm (using real encoding) was evaluated through Discrete Simulation; the technique
used to build and modify (depending on the periodical preventive maintenance times)
the Functionability Profile. This is a concept presented by Knezevic [7], which explains
the history of the system varying among operating and recovery times. It is a powerful
modelling technique, which permits analysis of complex systems with a reality more
realistic representation of their behaviour. In the previous study, the performance of several
configurations of the Multi-objective Evolutionary Algorithm Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [8] in a real encoding environment was explored. In the
present paper an in-depth encoding comparative study is developed. Firstly, the real
encoding case study is extended, and secondly, some binary encoding alternatives are
explored, looking for possible advantages and disadvantages to encode this kind of real
world problems. Moreover, an accuracy-level experiment for the preventive maintenance
strategy is considered. The first part of the study determines the optimum periodical
Time To Start a Preventive Maintenance activity measured in hours. Two more levels are
explored in this study: days and weeks. There are preventive maintenance activities whose
accuracy level in time can be of little importance. It may not be important to determine the
exact instant for their development, being enough to define the day or the week. Therefore,
the effect of several chromosome lengths is explored looking to improve the evolutionary
process. Summarising the contributions of the present study:

• In this work, seven encoding alternatives are thoroughly explored: Real encoding
(with Simulated Binary Crossover), Binary encoding (with 1 point Crossover), Binary
encoding (with 2 point Crossover), Binary encoding (with Uniform Crossover), Gray
encoding (with 1 point Crossover), Gray encoding (with 2 point Crossover) and Gray
encoding (with Uniform Crossover). Their performances are compared using the
Hypervolume indicator and statistical significance tests.

• Additionally, three accuracy levels on time are explored for the binary encoding;
hours, days and weeks, in order to analyse the effect of chromosome length in the
evolutionary search and final non-dominated set of solutions. Their performances are
compared using the Hypervolume indicator and statistical significance tests.

• The methodology is applied in an industrial test case, obtaining an improved
non-dominated front of optimum solutions that could be considered as both a
benchmark case and reference solution.
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The paper is organised as follows. Section 2 explores the related literature. Section 3
shows an outline of the methodology. Section 4 presents the case study and Section 5 the
description of experiments carried out (encodings and accuracy levels). In Section 6, results
are shown and discussed, and finally, Section 7 introduces the conclusions.

2. Literature Review

Approaches dealing with reliability systems design (redundancy allocation) are
presented first, and approaches dealing with preventive maintenance optimum design are
presented secondly in this section. Finally, the third subsection deals with the simultaneous
optimisation of reliability systems design and preventive maintenance.

2.1. Redundancy Allocation of Reliability Systems Design Optimisation

Improving the Reliability or Availability for series-parallel systems through redundancy
allocation using Multi-objective Evolutionary Algorithms has been considered in several
studies. Many authors have developed Genetic Algorithms-based approaches to solve
the problem. Bussaca et al. [9] utilized a Multi-objective Genetic Algorithm to optimise
the design of a safety system through redundancy allocation, considering components
with constant failure rates. They employed profit during the mission time (formed by
the profit from plant operation minus costs due to purchases and installations, repairs
and penalties during downtime) and the reliability at mission time as objective functions.
Marseguerra et al. [10] presented an approach that couples a Multi-objective Evolutionary
Algorithm and Monte Carlo simulation for optimal networks design aimed at maximising
the network reliability estimate and minimising its uncertainty. Tian and Zuo [11] proposed
a multi-objective optimisation model for redundancy allocation for multi-state series-parallel
systems. They used physical programming as an approach to optimise the system structure
and a Genetic Algorithm to solve it. The objectives consisted of maximising the system
performance and minimising its cost and weight. Huang et al. [12] proposed a niched
Pareto Genetic Algorithm to solve reliability-based design problems aiming to achieve a
high number of feasible solutions. They used reliability and cost as objective functions.
Zoulfaghari et al. [13] presented a Mixed Integer Nonlinear Programming model to
availability optimisation of a system taking into account both repairable and non-repairable
components. They developed a Genetic Algorithm looking for maximum availability and
minimum cost. Taboada et al. [14] introduced a Genetic Algorithm to solve multi-state
optimisation design problems. The universal moment generating function was used to
evaluate the reliability indices of the system. They used reliability, cost and weight as
objective functions.

The use of the NSGA and NSGA-II algorithms has been extensive; some applications
ranging between the years 2003–2021 are shown as follows. Taboaba et al. [15] presented
two methods to reduce the size of the Pareto optimal set for multi-objective system-reliability
design problems: on the one hand using a pseudo ranking scheme and on the other hand
using data mining clustering techniques. To demonstrate the performance of the methods,
they solved the redundancy allocation problem using the Non-dominated Sorting Genetic
Algorithm (NSGA) to find the Pareto optimal solutions, and then the methods were
successfully applied to reduce the Pareto set. They studied reliability, cost and weight as
objective functions. However, the most widely used standard Genetic Algorithm is the
second version of the NSGA Multi-objective Evolutionary Algorithm. Greiner et al. [16]
introduced new safety systems multi-objective optimum design methodology (based
on fault trees evaluated by the weight method) using not only the standard NSGA-II
but also the Strength Pareto Evolutionary Genetic Algorithm (SPEA2) and the controlled
elitist-NSGA-II, with minimum unavailability and cost criteria. Salazar et al. [17] developed
a formulation to solve several optimal system design problems. They used the NSGA-II
to achieve maximum reliability and minimum cost. Limbourg and Kochs [18] applied
a specification method originating from software engineering named Feature Modelling
and a NSGA-II with an external repository. They maximised the life distribution and
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minimised the system cost. Kumar et al. [19] proposed a multi-objective formulation of
multi-level redundancy allocation optimisation problems and a methodology to solve them.
They proposed a hierarchical Genetic Algorithm framework by introducing hierarchical
genotype encoding for design variables. Not only the NSGA-II but also the SPEA2
Multi-objective Evolutionary Algorithm were used, considering reliability and cost as
objective functions. Chambari et al. [20] modelled the redundancy allocation problem
taking into account non-repairable series-parallel systems, non-constant failure rates and
imperfect switching of redundant cold-standby components. They used NSGA-II as
well as Multi-objective Particle Swarm Optimisation (MOPSO) to solve the problem with
reliability and cost as objective functions. Safari [21] proposes a variant of the NSGA-II
method to solve a novel formulation for redundancy allocation. He considered for the
redundancy strategy both active and cold-standby redundancies with reliability and cost
as objective functions. Ardakan et al. [22] solved the redundancy allocation by using mixed
redundancies combining both active and cold-standby redundancies. Under this approach,
the redundancy strategy is not predetermined. They studied reliability and cost as objective
functions using the NSGA-II method. Ghorabaee et al. [23] considered reliability and cost
as objective functions to solve the redundancies allocation problem using NSGA-II. They
introduced modified methods of diversity preservation and constraints handling. Amiri
and Khajeh [24] considered repairable components to solve the redundancy allocation
problem in a series-parallel system. They used the NSGA-II method with availability and
cost as objective functions. Jahromi and Feizabadi [25] presented a formulation for the
redundancy allocation of non-homogeneous components considering reliability and cost
as objective functions. The NSGA-II method was used to achieve the Pareto optimal front.
Kayedpour et al. [26] developed an integrated algorithm to solve reliability design problems
taking into account instantaneous availability, repairable components and a selection of
configuration strategies (parallel, cold or warm) based on Markov processes and the
NSGA-II method. As objective functions, they considered availability and cost. Sharifi
et al. [27] presented a new multi-objective redundancy allocation problem for systems
where the subsystems were considered weighted-k-out-of-n parallel. They used NSGA-II
with reliability and cost as objective functions. Chambari et al. [28] proposed a bi-objective
simulation-based optimisation model to redundancy allocation in series-parallel systems
with homogeneous components to maximise the system reliability and minimise the cost
and using NSGA-II. They considered optimal component types, the redundancy level, and
the redundancy strategy (active, cold standby, mixed or K-mixed) with imperfect switching.

Other Multi-objective evolutionary and bio-inspired methods have been used in a
lesser measure. Zhao et al. [29] optimised the design of series-parallel systems using
the Ant Colony Algorithm in a multi-objective approach, considering reliability, cost
and weight as objective functions. Chiang and Chen [30] proposed a Multi-objective
Evolutionary Algorithm based on simulated annealing to solve the availability allocation
and optimisation problem of a repairable series-parallel system. They applied their algorithm
to two study cases presented in references [31] (with objective functions availability and cost)
and [9]. Khalili-Damghani et al. [32] proposed a novel dynamic self-adaptive Multi-objective
Particle Swarm Optimisation method to solve two-states reliability redundancy allocation
problems. They contemplated reliability, cost and weight as objective functions. Jiansheng
et al. [33] proposed an Artificial Bee Colony Algorithm to solve the redundancy allocation
problem for repairable series-parallel systems where uncertainty in failure rates, repair
rates and other relative coefficients involved were considered. They used availability and
cost as objective functions. Samanta and Basu [34] proposed an Attraction-based Particle
Swarm Optimisation to solve availability allocation problems for systems with repairable
components, where they introduced fuzzy theory to manage uncertainties. They used
availability and cost as objective functions.
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2.2. Preventive Maintenance Strategy Optimisation

Improving the Reliability or Availability for series-parallel systems through the
preventive maintenance strategy has been widely studied using Multi-objective Evolutionary
Algorithms, too. Many authors used Genetic Algorithms as an optimisation method.
Muñoz et al. [35] presented an approach based on Genetic Algorithms and focused on
the global and constrained optimisation of surveillance and maintenance of components
based on risk and cost criteria. Marseguerra et al. [36] coupled Genetic Algorithms and
Monte Carlo simulation in order to optimise profit and availability. The Monte Carlo
simulation was used to model system degradation while the Genetic Algorithm was
used to determine the optimal degradation level beyond which preventive maintenance
has to be performed. Gao et al. [37] studied the flexible job shop scheduling problem
with availability constraints affecting maintenance tasks. They used a Genetic Algorithm
looking for minimum makespan (time that elapses from the start of work to the end),
time expended on a machine and the total time expended on all machines. Sánchez
et al. [38] used Genetic Algorithms for the optimisation of testing and maintenance
tasks with unavailability and cost as objective functions. They considered the epistemic
uncertainty in relation to imperfect repairs. Wang and Pham [39] used a Genetic Algorithm
to estimate the preventive maintenance interval allowing for imperfect repairs and the
number of preventive maintenance activities before component needs to be replaced. They
used availability and cost as objective functions. Ben Ali et al. [40] developed an elitist
Genetic Algorithm to deal with the production and maintenance-scheduling problem,
minimising makespan and cost. Gao et al. [5] studied preventive maintenance considering
the dynamic interval for multi-component systems. They solved the problem using Genetic
Algorithms with availability and cost as objective functions. An et al. [41] built a novel
integrated optimisation model including the flexible job-shop scheduling problem to reduce
energy consumption in the manufacturing sector. They considered degradation effects and
imperfect maintenance. They proposed a Hybrid Multi-objective Evolutionary Algorithm
taking into account the makespan, total tardiness, total production cost and total energy
consumption as objective functions. Bressi et al. [42] proposed a methodology to minimise
the present value of the life cycle maintenance costs and maximise the life cycle quality
level of the railway track-bed considering different levels of reliability. They used a Genetic
Algorithm to achieve optimal solutions.

The use of the NSGA-II algorithm and other non-dominated criterion-based approaches
has been extensive with applications ranging across the years 2005-2021. Martorell et al. [43]
proposed a methodology to take decisions and determine technical specifications and
maintenance looking for increasing reliability, availability and maintainability. They used
SPEA2 as an optimisation method. Oyarbide-Zubillaga et al. [44] coupled Discrete Event
Simulation and Genetic Algorithms (NSGA-II) to determine the optimal frequency for
preventive maintenance of systems under cost and profit criteria. Berrichi et al. [45]
proposed a new method to deal with simultaneous production and maintenance scheduling.
They used the Weighted Sum Genetic Algorithm (WSGA) and NSGA-II as optimisation
methods to compare their performances. They worked with makespan and unavailability
due to maintenance tasks as objective functions. Moradi et al. [46] studied simultaneous
production and preventive maintenance scheduling to minimise the global time invested
in production tasks and unavailability due to preventive maintenance activities. They used
four Genetic Algorithms: NSGA-II, NRGA (Non-ranking Genetic Algorithm), CDRNSGA-II
(NSGA-II with Composite Dispatching Rule and active scheduling) and CDRNRGA (NRGA
with Composite Dispatching Rule and active scheduling). Hnaien and Yalaoui [47]
considered a similar problem, minimising the makespan and the delay between the
real and the theoretical maintenance frequency for two machines. They used NSGA-II
and SPEA2, including two new versions based on the Johnson Algorithm. Wang and
Liu [48] considered the optimisation of parallel-machine-scheduling integrated with two
kinds of resources (machines and moulds) and preventive maintenance planning. They
used makespan and availability as objective functions and NSGA-II as an optimisation
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method. Piasson et al. [49] proposed a model to solve the problem of optimising the
reliability-centred maintenance planning of an electric power distribution system. They
used NSGA-II to achieve the Pareto optimal front and, as objective functions, they minimised
the cost due to maintenance activities and maximised the index of reliability of the whole
system. Sheikhalishahi et al. [50] presented an open shop scheduling model that considers
human error and preventive maintenance. They considered three objective functions: human
error, maintenance and production factors. They used NSGA-II and SPEA2 as optimisation
methods. As well as that, they used another Evolutionary Algorithm, the Multi-Objective
Particle Swarm Optimisation (MOPSO) method. Boufellouh and Belkaid [51] proposed
a bi-objective model that determines production scheduling, maintenance planning and
resource supply rate decisions in order to minimise the makespan and total production costs
(including total maintenance, resource consumption and resource inventory costs). They
used NSGA-II and BOPSO (Bi-Objective Particle Swarm Optimization) as Evolutionary
Optimisation Algorithms. Zang and Yang [52] proposed a multi-objective model of
maintenance planning and resource allocation for wind farms using NSGA-II. They
considered the implementation of maintenance tasks using the minimal total resources and
at the minimal penalty cost.

Other Multi-objective Evolutionary methods have been used. Berrichi et al. [53] solved
the joint production and preventive maintenance-scheduling problem using the Ant Colony
Algorithm with availability and cost as objective functions. Suresh and Kumarappan [54]
presented a model for the maintenance scheduling of generators using hybrid Improved
Binary Particle Swarm Optimisation (IBPSO). As objective functions, they used a reduction
in the loss of load probability and minimisation of the annual supply reserve ratio deviation
for a power system. Li et al. [55] presented a novel Discrete Artificial Bee Colony Algorithm
for the flexible job-shop scheduling problem considering maintenance activities. They used
as objective functions the makespan, the total workload of machines and the workload of
the critical machine.

2.3. Redundancy Allocation and Preventive Strategy Optimisation

Therefore, it is possible to improve the availability of repairable systems by dealing
with their design and employing a preventive maintenance strategy. However, only a
few works have been developed to look at the simultaneous optimisation of both from a
multi-objective point of view. In Galván et al. [56], a methodology for Integrated Safety
System Design and Maintenance Optimisation based on a bi-level evolutionary process
was presented. While the inner loop is devoted to searching for the optimum maintenance
strategy for a given design, the outer loop searches for the optimum system design.
They used Genetic Algorithms as an optimisation method and cost and unavailability as
objective functions. Okasha and Frangopol [57] considered the simultaneous optimisation
of design and maintenance during the life cycle using Genetic Algorithms. They studied
system reliability, redundancy and life-cycle cost as objective functions. Adjoul et al. [58]
described a new approach to simultaneous optimisation of design and maintenance
of multi-component industrial systems improving their performances with reliability
and cost as objective functions. They used a two level Genetic Algorithm; the first
optimises the design based on reliability and cost, and the second optimises the dynamic
maintenance plan.

This work studies the simultaneous optimisation of design and preventive maintenance
strategy coupling Multi-objective Evolutionary Algorithms and Discrete Simulation: a technique
that has achieved good results in the Reliability field. Coupling Multi-objective Evolutionary
Algorithms with Discrete Simulation has been studied, on the one hand, to supply redundancy
allocation [10] and, on the other hand, to determine the preventive maintenance strategy [36,44].
Moreover, only a few works have been developed looking at design and corrective
maintenance strategy simultaneously [59,60]. Nevertheless, to the knowledge of the authors
of this work, coupling Multi-objective Evolutionary Algorithms and Discrete Simulation has
not yet been explored for both joint optimisation of the design and preventive maintenance
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strategy as in the current study where, additionally, a variety of encoding schemes were
considered in the analysis. In the studies cited in the present literature review, some used
real encoding, while others used binary or integer encoding; however, not one of them
studied the possible impact of such encoding schemes on performance. Moreover, an
accuracy experiment is developed in the present paper, including the time unit needed
to carry out the preventive maintenance activities. As shown in the above literature
review, NSGA-II is one of the state-of-the-art Multi-objective Evolutionary Algorithms
more commonly used to deal with redundancy allocation and scheduling preventive
maintenance problems. Therefore, this method is thorough explored in the present paper.

3. Methodology and Description of the Model
3.1. Extracting Availability and Cost from Functionability Profiles

Availability can be computed by using the unconditional failure w(t) and repair v(t)
intensities, as is explained in Ref. [2]. These are described by the following Equation (1),
where f (t) is the failure density function of a system,

∫ t
0 f (t − u)v(u)du is the failure

probability of the cited system in interval [0, t) having worked continuously since being
repaired in [u, u+ du) given that it was working at t = 0 and

∫ t
0 g(t− u)w(u)du is the repair

probability in interval [0, t), given that it has been in the failed state since the previous
failure in [u, u + du) and that it was working at t = 0.

w(t) = f (t) +
∫ t

0
f (t − u)v(u)du

v(t) =
∫ t

0
g(t − u)w(u)du

(1)

When the system devices have exponential failure and repair intensities (constant
failure and repair rates), it is not relatively straightforward to find its availability using
the solutions of Equation (1). However, when the system devices do not have exponential
failure and/or repair intensities, finding the system availability using Equation (1) is
difficult, so a simulation approach may be more suitable. In this paper, the system
availability is characterised in a simulation approach by using the system Functionability
Profile, a concept introduced by Knezevic [7] and defined as the inherent capacity of
systems to achieve the required function under specific features when they are used as
specified. Speaking in general, all systems achieve their function at the beginning of their
lives. However, irreversible changes occur over time and variations in system behaviour
happen. The deviation of the variations in relation to the satisfactory features reveals the
occurrence of system failure, which causes the transition from operating state to failure
state. After failing, recovery activities (corrective maintenance) can recover its capacity to
fulfil the required function when the system is repairable.

Additional tasks to maintain the operating status could be carried out. These are
called preventive maintenance activities. These are generally less complex than a repair
and should be done prior to failure. From the Functionability Profile point of view, the
states of a repairable system fluctuate between operation and failure over the mission
time. The shape of cited changes is called the Functionability Profile because it shows
the states over the mission time. Therefore, Functionability Profiles depend on operation
times (either Time To Failure or Time To Start a scheduled Preventive Maintenance activity)
(t f 1, t f 2, ..., t f n) and recovery times (either Time To Repair after failure or Time To Perform
a scheduled Preventive Maintenance activity) (tr1, tr2, ..., trn). It is obvious that, after a
period of operation, a period of recovery is needed.

In the present paper, the system Functionability Profile is built by using Discrete Event
Simulation in a simulation approach as will be explained later. Once known, the system
Functionability Profile will be able to compute the system Availability through the relation
between the system operation times and the system recovery times. The system will be able
to fulfil its purpose during t f times, so it is possible to evaluate its Availability at mission
time by using Equation (2).



Mathematics 2021, 9, 1751 8 of 39

A =

n

∑
i=1

t f i

n

∑
i=1

t f i +
m

∑
j=1

trj

(2)

where:

• n is the total number of operation times,
• t f i is the i-th operation time in hours (Time To Failure or Time To Start a Preventive

Maintenance activity),
• m is the total number of recovery times,
• trj is the j-th recovery time in hours (Time To Repair or Time To Perform a Preventive

Maintenance activity).

Operation and recovery times are random variables so they may be treated statistically.
They can be defined as probability density functions through their respective parameters.
There are several databases such as OREDA [61], which supply the characteristic parameters
for the referred functions, so operation and recovery times can be characterised for system
devices. When systems are operating, earnings are generated due to the availability of the
system. Conversely, when systems have to be recovered, economic cost is invested in order
to regain the operation status. In this paper, the economic cost is a variable directly related
to recovery times, which are related to corrective and preventive maintenance activities;
quantities computed by Equation (3).

C =
q

∑
i=1

cci +
p

∑
j=1

cpj (3)

where:

• C is the system operation cost quantified in economic units,
• q is the total number of corrective maintenance activities,
• cci is the cost due to the i-th corrective maintenance activity,
• p is the total number of preventive maintenance activities,
• cpj is the cost due to the j-th preventive maintenance activity.

In this work, costs derived from maintenance activities depend on fixed quantities per
hour (corrective and preventive) so the global cost is directly related to the recovery times.
Preventive maintenance activities are scheduled shutdowns so recovery times will be
shorter and more economical than recovery times due to corrective maintenance activities
(for reasons explained before, such as access to human personnel who are willing and/or
trained, and/or the availability of spare parts). It will be necessary to carry out preventive
maintenance activities to avoid long recovery times. These should ideally be done before
the failure but as close as possible to it. Therefore, the basic Functionability Profile of
the system (i.e., the system Functionability Profile, which represents the continuous cycle
of failure-repair within the mission time, without considering preventive maintenance
activities) should be modified by including preventive maintenance activities for system
devices. This approach makes it possible to maximise the system Availability and minimise
the costs due to recovery times.

3.2. Building Functionability Profiles to Evaluate the Objective Functions

It is necessary to characterise both the system Availability and the Cost from the
system Functionability Profile in order to optimise the system design and preventive
maintenance strategy. The Functionability Profiles of all system devices are built by using
Discrete Event Simulation. Finally, the system Functionability Profile is built from these
Functionability Profiles. With this purpose, it is necessary to have information about how to
characterise operation Times To Failure (TF) and Times To Repair after failure (TR), which
are related to the parameters of their probability density functions. The Functionability
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Profiles for system devices are built by generating random times, which are obtained from
the respective probability density functions, both for Times To Failure (TF) and Times
To Repair (TR). In order to modify the Functionability Profiles relating to the preventive
maintenance activities, Times To Start a Preventive Maintenance (TP) have to be used.
This information is supplied via each solution provided by the behaviour Algorithm (each
individual of the population) which is used to build the Functionability Profile of each
device through Discrete Simulation. Moreover, recovery times in relation to the preventive
maintenance activities or Times To Perform a Preventive Maintenance activity (TRP) have
to be introduced by generating random times within the limits previously fixed. The
process is explained below:

1. System mission time must be defined and then, the process continues for all devices.
2. The device Functionability Profile (PF) must be initialised.
3. The Time To Start a Preventive Maintenance activity (TP) proposed by the Multi-objective

Evolutionary Algorithm is extracted from the individual (candidate solution) that is
being evaluated and a Time To Perform a Preventive Maintenance activity (TRP) is
randomly generated, within the limits previously fixed.

4. With reference to the failure probability density function related to the device, a Time
To Failure (TF) is randomly generated, within the limits previously fixed.

5. If TP < TF, the preventive maintenance activity is performed before the failure. In
this case, as many operating times units as TP units followed by as many recovery
times units as TRP units are added to the device Functionability Profile. Each time
unit represented in this way (both operating times and recovery times) is equivalent
to one hour, day or week of real time, depending on the accuracy level chosen.

6. If TP > TF, the failure occurs before carrying out the preventive maintenance activity.
In this case, taking into consideration the repair probability density function related
to the device, the Time To Repair after the failure (TR) is randomly generated, within
the limits previously fixed. Then, as many operating times units as TF units followed
by as many recovery times units as TR units are added to the device Functionability
Profile. Each time unit represented in this way (both operating times and recovery
times) is equivalent to one hour, day or week of real time, depending on the accuracy
level chosen.

7. Steps 4 to 6 have to be repeated until the end of the device mission time.
8. Steps 2 to 7 have to be repeated until the construction of the Functionability Profiles

of all devices.
9. After building the Functionability Profiles of the devices, the system Functionability

Profile is built by referring to the series (AND) or parallel (OR) distribution of the
system devices.

Once the system Functionability Profile is built, the values of the objective functions
can be computed by using both Equation (2) (evaluating the system Availability in relation
to the time in which the system is operating and being recovered) and Equation (3)
(evaluating the system operation Cost depending on the cost of the time units in relation to
the development of corrective or preventive maintenance).

3.3. Multi-Objective Optimisation Approach

The optimisation method used, the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) belongs to the Evolutionary Algorithms (EA) paradigm. These kind of methods
use a population of individuals with a specific size. Each individual is a multidimensional
vector, called a chromosome, representing a possible candidate solution to the problem,
while the vector components are called genes or decision variables. NSGA-II uses the
concept of Pareto dominance as the basis of its selection criterion. Extended information on
Evolutionary Optimisation Algorithms can be found in Ref. [3] and related to Multi-objective
Evolutionary Algorithms in Ref. [62]. In this work, each individual in the population
consists of a string (of real numbers or integers, depending on the encoding used, with
values between 0 and 1) in which the system design alternatives and the periodic Times



Mathematics 2021, 9, 1751 10 of 39

To Start a Preventive Maintenance activity related to each device included in the system
design is codified. Optimisation problems can be minimised or maximised for one or more
of the objectives. In most cases, real world problems present various objectives in conflict
with each other. These problems are called “Multi-objective” and their solutions arise
from a solutions set which represents the best compromise among the objectives (Pareto
optimal set) [62,63]. These kind of problems are described by Equation (4) (considering a
minimisation problem) [3].

min
x

f (x) = min
x

[ f1(x), f2(x), ..., fk(x)] (4)

In problems defined in this way, the k functions have to be minimised simultaneously.
In the present paper, the objective functions are, on the one hand, the system Availability
(first objective function, which is maximised and which is mathematically expressed by
Equation (2); maximising Availability is similar to minimise Unavailability) and, on the
other hand, the operation Cost (second objective function, which is minimised and which
is mathematically expressed by Equation (3)).

4. The Case Study

The case study is based on the case presented in Ref. [6]. It consists of simultaneously
optimising the design and the preventive maintenance strategy for an industrial fluid
injection system, which is composed of cut valves (Vi) and impulsion pumps (Pi), taking
Availability and operation Cost as objective functions. The desired outcome is maximum
Availability and minimum operation Cost. The higher the investment in preventive
maintenance, the better the system Availability. Conversely, this policy implies the growth
of unwanted Cost. The system scheme is shown in Figure 1.

Figure 1. Case study: fluid injection system.

Some considerations are taken as follows:

• The number of redundant devices is limited as shown in Figure 1,
• two states are considered for each device: operation or failed state,
• the devices are independent of each other,
• a repair starts just after the failure of the device,
• a repair returns the device to the as-good-as-new state.

The data used in this work are shown in Table 1. Extended information regarding the
parameters is supplied in Appendix A.
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Table 1. Data set for system devices.

Parameter Value Source

Life Cycle 700,800 h -
Corrective Maintenance Cost 0.5 units Machinery & Reliability Institute
Preventive Maintenance Cost 0.125 units Machinery & Reliability Institute
Pump TFmin 1 h Machinery & Reliability Institute
Pump TFmax 70,080 h Machinery & Reliability Institute
Pump TF λ 159.57 × 10−6 h OREDA 2009
Pump TRmin 1 h Machinery & Reliability Institute
Pump TRmax 24.33 h µ + 4σ
Pump TR µ 11 h OREDA 2009
Pump TR σ 3.33 h (µ – TRmin)/3
Pump TPmin 2920 h Machinery & Reliability Institute
Pump TPmax 8760 h Machinery & Reliability Institute
Pump TRPmin 4 h Machinery & Reliability Institute
Pump TRPmax 8 h Machinery & Reliability Institute
Valve TFmin 1 h Machinery & Reliability Institute
Valve TFmax 70,080 h Machinery & Reliability Institute
Valve TF λ 44.61 × 10−6 h OREDA 2009
Valve TRmin 1 h Machinery & Reliability Institute
Valve TRmax 20.83 h µ + 4σ
Valve TR µ 9.5 h OREDA 2009
Valve TR σ 2.83 h (µ – TRmin)/3
Valve TPmin 8760 h Machinery & Reliability Institute
Valve TPmax 35,040 h Machinery & Reliability Institute
Valve TRPmin 1 h Machinery & Reliability Institute
Valve TRPmax 3 h Machinery & Reliability Institute

The data were obtained from specific literature [61], expert judgement (based on
professional experience from the Machinery & Reliability Institute (MRI), Alabama, USA)
and mathematical relations. In this sense, the TR σ for valves and pumps were set in
relation to the µ of their respective normal distribution functions and their TRmin previously
established. In relation to the TRmax, it is known that 99.7% of the values of a normally
distributed variable are included in the interval µ± 3σ. The interval was extended to µ± 4σ,
taking into account anecdotal further values. As shown above, optimisation objectives
consist of maximising the system Availability and minimising the operation Cost due
unproductive system phases (both because the system is being repaired and because the
system is being maintained). To do that:

• It is necessary to establish the optimum period to perform a preventive maintenance
activity for the system devices, and

• It is necessary to decide whether to include redundant devices such as P2 and/or
V4 by evaluating design alternatives. Including redundant devices will improve the
system Availability but it will also increase the system operation Cost.

5. Description of the Experiments Carried Out

Two sets of experiment comparisons have been developed: first, comparing several
encodings (real, binary and gray), and second, comparing several accuracies in the binary
encoding. Finally, a description of the NSGA-II configuration is shown in the last subsection.

5.1. Comparing Encodings

From the optimisation point of view, it was explained before that the Evolutionary
Algorithm (EA) uses a population of individuals called chromosomes, which represent
possible solutions to the problem through their decision variables. The encoding of the
system parameters is a crucial aspect of the algorithm. This has a significant influence on
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whether or not the algorithm works [3]. In the present paper, we intend to check whether
there is a significant difference between the performances of the different encodings.
Depending on the encoding type, each individual is codified as follows:

• Real encoding: This is formed by strings of real numbers (with 0 as a minimum
value and 1 as a maximum value) following the shape [B1 B2 T1 T2 T3 T4 T5 T6 T7].
The presence of redundant devices, P2 and V4, is defined by B1 and B2, respectively,
and the optimum Time To Start a Preventive Maintenance activity in relation to each
system device is represented by T1 to T7. The values of the decision variables must
be scaled and rounded, i.e., B1 and B2 are rounded to the nearest integer (0 implies
that the respective device is not selected whereas 1 implies the opposite). T1 to T7
are scaled among the respective TPmin and TPmax (depending on the type of device)
and rounded to the nearest integer using Equation (5), where TP is the true value
of the Time To Start a Preventive Maintenance activity, measured in hours (e.g., the
decision variable T1 represents the Time To Start a Preventive Maintenance for the
valve V1 whose TPmin and TPmax has a value of 8760 h and 35,040 h, respectively. If
the value of the decision variable T1 is 0.532, the value of the Time To Start a Preventive
Maintenance activity will be 8760 + 0.532 · (35,040 − 8760) ≈ 22,741) h.

TP = round(TPmin + X · (TPmax − TPmin)) (5)

• Binary encoding: This is formed by strings of binary numbers that vary between 0
and 1, where the total number of bits is 103 and they are:

1. B1: This denotes the presence of the pump P2 in the system design (0 implies
that the respective device is not selected whereas 1 implies the opposite).

2. B2: This denotes the presence of the valve V4 in the system design (0 implies
that the respective device is not selected whereas 1 implies the opposite).

3. T3 to T17: These denote the Time To Start a Preventive Maintenance activity to
the valve V1. A binary scale that allows representation of the numbers from
TPmin to TPmax is needed. TPmin has a value of 8760 h and TPmax has a value of
35,040 h so 35, 040 − 8760 = 26, 280 steps needed, where the step 0 represents a
time of 8760 h and the step 26,279 represents a time of 35,040 h. A binary scale
with at least 26,280 steps involves using 15 bits (as 26,280 steps lies between
214 = 16, 384 and 215 = 32, 768). Since 26,280 steps are needed and 32,768 are
possible on the scale, an equivalent relation must be used. Each step in the scale
of 32,768 steps represents 26, 768 ÷ 32, 768 = 0.8020019531 steps in the scale
of 26,768 steps. Therefore, it is possible to calculate the true Time To Start a
Preventive Maintenance activity (in hours) using the scale change shown by
Equation (6), where B represents the decimal value of the binary string T3 to
T17 (e.g., if the values of the decision variables in binary encoding are 1 0 1 1 0
1 1 0 0 0 1 1 1 0 1, the decimal value in the scale of 32,768 steps will be 23,325.
If 26,768 steps are scaled, the number achieved is 23, 325 × 0.8020019531 ≈
18, 707 steps. Therefore, the true Time To Start a Preventive Maintenance activity
amounts to 18,707 + 8760 = 24,467 h).

TP = round(TPmin + B · (0.8020019531)) (6)

4. T18 to T30: These denote the Time To Start a Preventive Maintenance activity
to the pump P2. A binary scale that allows representation of the numbers
from TPmin to TPmax in needed. TPmin has a value of 2920 h and TPmax has
a value of 8760 h so 8760 − 2920 = 5840 steps needed, where the step 0
represents the time of 2920 h and the step 5839 represents the time of 8760 h.
A binary scale with at least 5840 steps involves using 13 bits (as 5840 steps
lies between 212 = 4096 and 213 = 8192). Since 5840 steps are needed and
8142 are possible on the scale, an equivalent relation must be used. Each step
in the scale of 8142 represents 5840 ÷ 8192 = 0.712890625 steps on a scale of
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5840 steps. Therefore, it is possible to calculate the true Time To Start a Preventive
Maintenance activity (hours) using the scale change shown by Equation (7),
where B represents the decimal value of the binary string T18 to T30 (e.g., if the
values of the decision variables in binary encoding are 1 0 1 1 0 1 1 0 0 0 1 1 1, the
value on a scale of 8192 steps will be 5831. If 5840 steps are scaled, the number
achieved is 5831 × 0.712890625 ≈ 4157 steps. Therefore, the true Time To Start a
Preventive Maintenance activity amounts to 4157 + 2920 = 7077 h).

TP = round(TPmin + B · (0.712890625)) (7)

5. T31 to T43: These denote the Time To Start a Preventive Maintenance activity to
the pump P3. The behaviour of its encoding is similar to the behaviour explained
for the pump P2.

6. T44 to T58: These denote the Time To Start a Preventive Maintenance activity to
the valve V4. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

7. T59 to T73: These denote the Time To Start a Preventive Maintenance activity to
the valve V5. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

8. T74 to T88: These denote the Time To Start a Preventive Maintenance activity to
the valve V6. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

9. T89 to T103: These denote the Time To Start a Preventive Maintenance activity to
the valve V7. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

• Gray encoding: When binary encoding is used, close numbers could bring big scheme
modifications (e.g., the code for 15 is 0 1 1 1 while the code for 16 is 1 0 0 0, which
represents changes in four (all) bits). Conversely, very similar numbers can represent
numbers that are very apart (e.g., the code for 0 is 0 0 0 0 while the code for 16 is 1 0 0
0). In addition to standard binary encoding, Gray encoding is used. Gray code is a
binary code where the difference among neighbouring numbers always differs by one
bit [64–66].

Therefore, the performance of real, standard binary and Gray encodings can be compared.

5.2. Comparing Accuracies

Once the encoding experiment had been developed, a second experiment was executed.
This consisted of studying the possible impact of the size of the chromosome. In the
encoding experiment, the hour was utilised by the chromosomes as a measure of time. In
this case, based on the idea that the exact hour to develop a preventive maintenance task is
not necessary, the day and the week were used as measures of time. Therefore, in these
cases, the solution regarding preventive maintenance strategy consisted of supplying the
Time To Start a Preventive Maintenance activity with the day or the week as a time unit,
respectively. The consequence was a reduction in the size of the chromosome, which was
applied to the binary encoding as follows:

• Binary encoding—Days: This is formed by strings of binary numbers that vary
between 0 and 1, where the total number of bits is 73 and they are:

1. B1: This denotes the presence of the pump P2 in the system design (0 implies
that the device is not selected whereas 1 implies the opposite).

2. B2: This denotes the presence of the valve V4 in the system design (0 implies
that the device is not selected whereas 1 implies the opposite).

3. T3 to T13: These denote the Time To Start a Preventive Maintenance activity to
the valve V1. A binary scale that allows representation of the numbers from
TPmin to TPmax expressed in days as a time unit is needed. TPmin has a value of
8760 h (equivalent to 365 days) and TPmax has a value of 35,040 h (equivalent to
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1460 days) so 1460 − 365 = 1095 steps needed, where the step 0 represents the
time of 365 days and the step 1094 represents the time of 1460 days. A binary
scale with at least 1095 steps involves using 11 bits (due to the fact that 1095 steps
lies between 210 = 1024 and 211 = 2048). Since 1095 steps are needed and 2048
are possible on the scale, an equivalent relation must be used. Each step on the
scale of 2048 steps represents 1095 ÷ 2048 = 0.5346679688 steps on a scale of
1095 steps. Therefore, it is possible to achieve the true Time To Start a Preventive
Maintenance activity (days) using the scale change shown by Equation (8), where
B represents the decimal value of the binary string T3 to T13 (e.g., if the values
of the decision variables in binary encoding are 1 0 1 1 0 1 1 0 0 0 1, the decimal
value on the scale of 2048 steps will be 1457. Scaling to a scale of 1095 steps, the
number achieved is 1457 × 0.5346679688 ≈ 779 steps. Therefore, the true Time
To Start a Preventive Maintenance activity amounts to 779 + 365 = 1144 days).

TP = round(TPmin + B · (0.5346679688)) (8)

4. T14 to T21: These denote the Time To Start a Preventive Maintenance activity to
the pump P2. A binary scale that allows representation of the numbers from
TPmin to TPmax expressed in days as a time unit is needed. TPmin has a value
of 2920 h (equivalent to 122 days) and TPmax has a value of 8760 (equivalent
to 365 days) so 365 − 122 = 243 steps needed, where the step 0 represents the
time of 122 days and the step 242 represents the time of 365 days. A binary scale
with at least 243 steps involves using 8 bits (as 243 steps lies between 27 = 128
and 28 = 256). Since 243 steps are needed and 256 are possible on the scale, an
equivalent relationship must be used. Each step in the scale of 256 represents
243 ÷ 256 = 0.94921875 steps in the scale of 243 steps. Therefore, it is possible to
achieve the true Time To Start a Preventive Maintenance activity (days) using
the scale change shown by Equation (9), where B represents the decimal value of
the binary string T14 to T21 (e.g., if the values of the decision variables in binary
encoding are 1 0 1 1 0 1 1 0, the value on the scale of 256 steps will be 182). Scaling
to a scale of 243 steps, the number achieved is 182 × 0.94921875 ≈ 173 steps.
Therefore, the true Time To Start a Preventive Maintenance activity amounts to
173 + 122 = 295 days).

TP = round(TPmin + B · (0.712890625)) (9)

5. T22 to T29: These denote the Time To Start a Preventive Maintenance activity to
the pump P3. The behaviour of its encoding is similar to the behaviour explained
for the pump P2.

6. T30 to T40: These denote the Time To Start a Preventive Maintenance activity to
the valve V4. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

7. T41 to T51: These denote the Time To Start a Preventive Maintenance activity to
the valve V5. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

8. T52 to T62: These denote the Time To Start a Preventive Maintenance activity to
the valve V6. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

9. T63 to T73: These denote the Time To Start a Preventive Maintenance activity to
the valve V7. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

• Binary encoding—Weeks: It is formed by strings of binary numbers that vary
between 0 and 1, where the total number of bits is 54 and they are:

1. B1: This denotes the presence of the pump P2 in the system design (0 implies
that the device is not selected whereas 1 implies the opposite).
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2. B2: This denotes the presence of the valve V4 in the system design (0 implies
that the device is not selected whereas 1 implies the opposite).

3. T3 to T10: These denote the Time To Start a Preventive Maintenance activity to
the valve V1. A binary scale that allows representation of the numbers from
TPmin to TPmax expressed in weeks as a time unit is needed. TPmin has a value
of 8760 h (equivalent to 52 weeks) and TPmax has a value of 35,040 h (equivalent
to 209 weeks) so 209 − 52 = 157 steps needed, where step 0 represents a
time of 52 weeks and step 156 represents a time of 209 weeks. A binary
scale with at least 157 steps involves using 8 bits (as 157 steps lies between
27 = 128 and 28 = 256). Since 157 steps are needed and 256 are possible on
the scale, an equivalent relationship must be used. Each step on a 256-steps
scale represents 157 ÷ 256 = 0.61328125 steps on the 157-steps scale. Therefore,
it is possible to achieve the true Time To Start a Preventive Maintenance activity
(weeks) using the scale change shown by Equation (10), where B represents the
decimal value of the binary string T3 to T10 (e.g., if the values of the decision
variables in binary encoding are 1 0 1 1 0 1 1 0, the decimal value in the scale of
256 steps will be 182. Working with a scale of 157 steps, the number achieved
is 182 × 0.61328125 ≈ 112 steps. Therefore, the true Time To Start a Preventive
Maintenance activity amounts to 112 + 52 = 164 weeks).

TP = round(TPmin + B · (0.61328125)) (10)

4. T11 to T16: These denote the Time To Start a Preventive Maintenance activity to
the pump P2. A binary scale that allows representation of the numbers from
TPmin to TPmax expressed in weeks as a time unit is needed. TPmin has a value
of 2920 h (equivalent to 17 weeks) and TPmax has a value of 8760 (equivalent
to 52 weeks) so 52 − 17 = 35 steps needed, where step 0 represents the time
of 17 weeks and step 34 represents the time of 52 weeks. A binary scale with
at least 35 steps involves using 6 bits (as 35 steps lies between 25 = 32 and
26 = 64). Since 35 steps are needed and 64 are possible on the scale, an equivalent
relationship must be used. Each step on the scale of 64-steps scale represents
35 ÷ 64 = 0.546875 steps in the 35-steps scale. Therefore, it is possible to achieve
the true Time To Start a Preventive Maintenance activity (weeks) using the
scale change shown by Equation (11), where B represents the decimal value
of the binary string T11 to T16 (e.g., if the values of the decision variables in
binary encoding are 1 0 1 1 0 1, the value in the scale of 64 steps will be 45.
Scaling on the 35-steps scale, the number achieved is 45 × 0.546875 ≈ 25 steps.
Therefore, the true Time To Start a Preventive Maintenance activity amounts to
45 + 17 = 62 weeks).

TP = round(TPmin + B · (0.546875)) (11)

5. T17 to T22: These denote the Time To Start a Preventive Maintenance activity to
the pump P3. The behaviour of its encoding is similar to the behaviour explained
for the pump P2.

6. T23 to T30: These denote the Time To Start a Preventive Maintenance activity to
the valve V4. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

7. T31 to T38: These denote the Time To Start a Preventive Maintenance activity to
the valve V5. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

8. T39 to T46: These denote the Time To Start a Preventive Maintenance activity to
the valve V6. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.
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9. T47 to T54: These denote the Time To Start a Preventive Maintenance activity to
the valve V7. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

5.3. NSGA-II Configuration

The parameters used to configure the NSGA-II evolutionary process are shown in
Table 2.

Table 2. Parameters to configure the evolutionary process.

Method Encoding Crossover Time Unit Population PrM disM PrC disC

NSGA-II

Real SBX Hour 50-100-150 0.5-1-1.5 20 1 20
Standard Binary 1 point (1PX) Hour 50-100-150 0.5-1-1.5 - 1 -
Standard Binary 2 Point (2PX) Hour 50-100-150 0.5-1-1.5 - 1 -
Standard Binary Uniform (UX) Hour 50-100-150 0.5-1-1.5 - 1 -
Gray 1 Point (1PX) Hour 50-100-150 0.5-1-1.5 - 1 -
Gray 2 Point (2PX) Hour 50-100-150 0.5-1-1.5 - 1 -
Gray Uniform (UX) Hour 50-100-150 0.5-1-1.5 - 1 -
Standard Binary 1 Point (1PX) Day 50-100-150 0.5-1-1.5 - 1 -
Standard Binary 2 Point (2PX) Day 50-100-150 0.5-1-1.5 - 1 -
Standard Binary Uniform (UX) Day 50-100-150 0.5-1-1.5 - 1 -
Standard Binary 1 Point (1PX) Week 50-100-150 0.5-1-1.5 - 1 -
Standard Binary 2 Point (2PX) Week 50-100-150 0.5-1-1.5 - 1 -
Standard Binary Uniform (UX) Week 50-100-150 0.5-1-1.5 - 1 -

Depending on the encoding applied, specific parameters have to be set, which are
described below:

• Crossover: Type of crossover during the evolutionary process. The Simulated Binary
Crossover (SBX) is used for real encoding while one point (1PX), two point (2PX) and
uniform crossover (UX) are used for binary and Gray encodings.

• Population size (N): The population sizes used are 50, 100 and 150 individuals.
• Mutation Probability (PrM): This is the expectation of the number of genes mutating.

The central value is equivalent to 1/decision variables (for the case study, the number
of decision variables is 9 using real encoding, 103 using standard and Gray encoding
with the hour as a time unit, 73 using standard binary encoding with the day as a time
unit and 54 using standard binary encoding with the week as a time unit). Two more
probabilities, one above and the other below the central value (1.5/decision variables
and 0.5/decision variables, respectively) are set.

• Mutation Distribution (disM): This is the mutation distribution index when the
Simulated Binary Crossover is used. It is set to the common value of 20.

• Crossover Probability (PrC): The probability of applying a crossover operator is set to
1 in all cases.

• Crossover Distribution (disC): The crossover distribution index when the Simulated
Binary Crossover is used. It is set to the common value of 20.

Each configuration was executed 10 times (for statistical purposes) with 10,000,000
evaluations used as the stopping criterion. Scale factors in relation to the value of the
objective functions were used with the purpose of achieving a dispersed non-dominated
front with the unit as maximum value. The values were obtained through a practical
approach in which the values of the scale factors are extracted from the values of the
objective functions when the optimisation process starts. This approach is based on the
assumption that the values of the objective functions will improve over the evolutionary
process. The scale factors were used as follows:

• The scale factor used to compute the Cost was 1700 economic units.
• The scale factor used to compute the system Unavailability was 0.003.
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Finally, a two dimensional reference point is needed to compute the Hypervolume
indicator. The cited point has to cover the values limited by the scale factors, which restricts
the values of the objective functions to a maximum of one. The reference point is set to (2,2).
The Software Platform PlatEMO [67] (programmed in MATLAB) is used to optimise the
application case. The Design and Maintenance Strategy analysis software (as explained in
Section 3) has been developed and implemented into the platform to solve the case study
shown in Section 4.

6. Results

Due to the complexity of the problem, a general-purpose calculation cluster was used
during the computational process. The cluster is composed of 28 calculation nodes and
one access node. Each calculation node consists of two Intel Xeon E5645 Westmere-EP
processors with 6 cores each and 48 GB of RAM memory, allowing 336 executions to be run
simultaneously.

Once the results were obtained, valuable information emerged. For each analysed
case, the following information is provided: Firstly, information related to the computational
process is given with the purpose of showing the complexity of the problem and computational
cost. It consists of the time taken for 10 executions of the nine configurations (three
population sizes and three mutation rates) related to each analysed case. Secondly, the
values of the main measures obtained for the final evaluation are shown. These measures
are the Average, Median, Minimum Value, Maximum Value and Standard Deviation of the
Hypervolume indicator [68] (HV). Thirdly, in order to establish the existence of significant
differences among the performance of the analysed case, a rigorous statistical analysis is
carried out. The Friedman’s test allows significant differences among results obtained to
be detected, and the null hypothesis (H0) to be rejected in that case. The p-value is a useful
datum, which represents the smallest significant value that can result in the rejection of H0.
The p-value provides information about whether a statistical hypothesis test is significant
(or not), and also indicates how significant the result is: The smaller the p-value (<0.05), the
stronger the evidence against the null hypothesis. Finally, the Hypervolume is computed
for the accumulated best non-dominated solutions obtained (the non-dominated front).
These represent the best equilibrium solutions among the objectives and the computational
procedure is described in Ref. [69].

Once the configurations had been ordered according to the Friedman’s test values,
one configuration of each analysed case was used for the final comparison taking two
experiments into consideration: one looking at encodings and the other looking at to
accuracy. In each case, additional information is given. The Hypervolume indicator
average value evolution (in ten executions) is shown for each configuration. Moreover,
box plots are given for the Hypervolume values distribution after the stopping criterion
is met. In addition, the Friedman’s test is used to detect significant differences among
the performance of the configurations for each experiment. Finally, the accumulated best
non-dominated solutions obtained (non-dominated front) are shown.

In Section 6.1, the results (of optimising the system that illustrate the case study)
obtained after using the NSGA-II with different encodings (Real, Standard Binary and
Gray) are presented; next, in Section 6.2 different accuracy levels of time (hours, days
and weeks) in the conditions explained above are analysed and finally, in Section 6.3, the
accumulated non-dominated designs are presented.

6.1. Encoding Experiment

The results of the Real encoding are presented first. Second, results of the binary
encoding are shown, followed by the results of the Gray encoding. Finally, a comparison of
the best performance cases of each codification is presented in Section 6.1.4.
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6.1.1. Real Encoding

The results of using real encoding with simulated binary crossover are shown below.
The computational time consumed is shown in Table 3. The average time represents the
computational time regarding each one of ten executions and nine different configurations
(real time consumed). The sequential time represents the computational time that would
have been needed in the case of not using the cluster. The computational time shows the
importance of using the cluster, which enables parallel processes.

Table 3. Computational time consumed.

Encoding Time Unit Average Time Sequential Time

Real SBX Hour 2 days, 18 h and 12 min. 8 months, 4 days, 23 h and 22 min.
Binary 1PX Hour 2 days, 18 h and 57 min. 8 months, 7 days, 18 h and 48 min.
Binary 2PX Hour 3 days, 2 h and 39 min. 9 months, 6 days, 5 h and 52 min.
Binary UX Hour 3 days and 39 min. 8 months, 29 days, 3 h and 8 min.
Gray 1PX Hour 2 days, 19 h and 35 min. 8 months, 10 days, 3 h and 23 min.
Gray 2PX Hour 2 days, 19 h and 56 min. 8 months, 11 days, 11 h and 29 min.
Gray UX Hour 2 days, 19 h and 40 min. 8 months, 10 days, 10 h and 34 min.

Total 2 days, 21 h and 6 min. 4 years, 11 months, 19 days, 8 h and 36 min.

The relationship between method configurations (where N represents the population
size and PrM the mutation probability) and identifiers is shown in Table 4. Moreover,
statistical information in relation to the Hypervolume value at the end of the evolutionary
process is shown (average, median, maximum, minimum and standard deviation, out
of 10 independent executions). It is possible to conclude that the configuration with the
identifier ID9 (with a population of 150 individuals and mutation probability of 1.5 gene per
chromosome) presents the highest Hypervolume average value, the highest Hypervolume
median value and the highest Hypervolume maximum value. The configuration with
identifier ID3 (population of 150 individuals and mutation probability of 0.5 gene per
chromosome) presents the highest Hypervolume minimum value and the configuration
with identifier ID4 (population of 50 individuals and mutation probability of one gene per
chromosome) presents the lowest Hypervolume standard deviation value.

Table 4. Hypervolume statistics (Real encoding).

Identifier Configuration Average Median Max. Min. St. D. Friedman’s Test
Av. Rank

ID1 N = 50 ; PrM = 0.5 2.2821 2.2857 2.3079 2.2531 0.0179 5.900
ID2 N = 100 ; PrM = 0.5 2.2886 2.2831 2.3258 2.2682 0.0170 4.800
ID3 N = 150 ; PrM = 0.5 2.2938 2.2883 2.3187 2.2730 0.0144 4.300
ID4 N = 50 ; PrM = 1 2.2927 2.2932 2.3113 2.2710 0.0117 3.999
ID5 N = 100 ; PrM = 1 2.2863 2.2916 2.3064 2.2584 0.0148 5.200
ID6 N = 150 ; PrM = 1 2.2890 2.2885 2.3157 2.2619 0.0170 5.100
ID7 N = 50 ; PrM = 1.5 2.2857 2.2788 2.3228 2.2701 0.0171 6.100
ID8 N = 100 ; PrM = 1.5 2.2821 2.2826 2.3051 2.2561 0.0162 5.600
ID9 N = 150 ; PrM = 1.5 2.2968 2.2962 2.3307 2.2641 0.0211 4.000

p-value 0.5788

In order to establish the best behaviour amongst the configurations, a statistical
significance hypothesis test was conducted. The average ranks computed through the
Friedman’s test and the p-value obtained (a value bigger than 0.05 implies that the null
hypothesis cannot be rejected, suggesting that all configurations perform in a similar way)
are shown in Table 4. It can be seen that the configuration with identifier ID4 (population
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of 50 individuals and mutation probability of one gene per chromosome) presents the best
average rank (in order to maximise the Hypervolume, the average rank has to be as low as
possible) so it was selected for the final comparison study among encoding configurations.

Finally, the best accumulated non-dominated solutions obtained through the final
generation of the evolutionary process for all executions and all configurations were used
to compute the accumulated Hypervolume (as described in Ref. [69]) whose value was
2.3943. As expected, the value is higher than 2.3307, the maximum value shown in Table 4.

6.1.2. Standard Binary Encoding

The results of using standard binary encoding with one point, two point and uniform
crossover are shown below. The computational time consumed by each one is shown
in Table 3. The relationship between method configurations and identifiers is shown in
Table 5. Moreover, statistical information relating to the Hypervolume value at the final of
the evolutionary process is shown.

For the binary encoding with one point crossover (B1PX), it is possible to conclude
that the configuration with identifier ID8 (population of 100 individuals and mutation
probability of 1.5 gene per chromosome) presents both the highest Hypervolume average
value and the highest Hypervolume median value, the configuration with identifier ID9
(population of 150 individuals and mutation probability of 1.5 gene per chromosome)
presents the highest Hypervolume maximum value, the configuration with identifier ID6
(population of 150 individuals and mutation probability of one gene per chromosome)
presents the highest Hypervolume minimum value, and the configuration with identifier
ID2 (population of 100 individuals and mutation probability of 0.5 gene per chromosome)
presents the lowest Hypervolume standard deviation.

For the binary encoding with two point crossover (B2PX), it is possible to conclude
that the configuration with identifier ID2 (population of 100 individuals and mutation
probability of 0.5 gene per chromosome) presents both the highest Hypervolume average
value and the highest Hypervolume median value, the configuration with identifier ID3
(population of 150 individuals and mutation probability of 0.5 gene per chromosome)
presents the highest Hypervolume maximum value and the configuration with identifier
ID5 (population of 100 individuals and mutation probability of one gene per chromosome)
presents both the highest Hypervolume minimum value and the lowest Hypervolume
standard deviation value.

For the binary encoding with uniform crossover (BUX), it is possible to conclude
that the configuration with identifier ID4 (population of 50 individuals and mutation
probability of one gene per chromosome) presents the highest Hypervolume average
value, the highest Hypervolume maximum value and the highest Hypervolume minimum
value. The configuration with identifier ID2 (population of 100 individuals and mutation
probability of 0.5 gene per chromosome) presents the highest Hypervolume median value
and the configuration with identifier ID6 (population of 150 individuals and mutation
probability of one gene per chromosome) presents the lowest Hypervolume standard
deviation value.
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Table 5. Hypervolume statistics (Binary encoding).

Encoding Identifier Configuration Average Median Max. Min. St. D. Friedman’s Test
Av. Rank

B1PX

ID1 N = 50 ; PrM = 0.5 2.2936 2.2919 2.3297 2.2738 0.0169 4.600
ID2 N = 100 ; PrM = 0.5 2.2919 2.2953 2.3057 2.2703 0.0107 4.500
ID3 N = 150 ; PrM = 0.5 2.2863 2.2915 2.2984 2.2554 0.0132 5.400
ID4 N = 50 ; PrM = 1 2.2929 2.2918 2.3151 2.2566 0.0171 4.400
ID5 N = 100 ; PrM = 1 2.2865 2.2822 2.3200 2.2674 0.0151 5.799
ID6 N = 150 ; PrM = 1 2.2932 2.2926 2.3216 2.2761 0.0150 4.700
ID7 N = 50 ; PrM = 1.5 2.2803 2.2775 2.2994 2.2642 0.0136 7.000
ID8 N = 100 ; PrM = 1.5 2.2970 2.3008 2.3126 2.2708 0.0134 3.100
ID9 N = 150 ; PrM = 1.5 2.2884 2.2871 2.3394 2.2616 0.0209 5.500

p-value 0.1228

B2PX

ID1 N = 50 ; PrM = 0.5 2.2808 2.2800 2.3173 2.2401 0.0237 6.500
ID2 N = 100 ; PrM = 0.5 2.3013 2.3051 2.3260 2.2714 0.0172 3.300
ID3 N = 150 ; PrM = 0.5 2.2916 2.2875 2.3627 2.2630 0.0298 5.400
ID4 N = 50 ; PrM = 1 2.2941 2.2926 2.3156 2.2724 0.0152 4.600
ID5 N = 100 ; PrM = 1 2.2908 2.2929 2.3056 2.2755 0.0089 4.800
ID6 N = 150 ; PrM = 1 2.2921 2.2905 2.3215 2.2644 0.0160 4.999
ID7 N = 50 ; PrM = 1.5 2.2924 2.2873 2.3483 2.2694 0.0226 5.100
ID8 N = 100 ; PrM = 1.5 2.2931 2.2930 2.3326 2.2606 0.0205 4.900
ID9 N = 150 ; PrM = 1.5 2.2883 2.2849 2.3107 2.2738 0.0145 5.399

p-value 0.4762

BUX

ID1 N = 50 ; PrM = 0.5 2.2841 2.2828 2.3023 2.2611 0.0122 5.500
ID2 N = 100 ; PrM = 0.5 2.2954 2.3000 2.3141 2.2647 0.0163 3.300
ID3 N = 150 ; PrM = 0.5 2.2883 2.2880 2.3265 2.2576 0.0199 5.200
ID4 N = 50 ; PrM = 1 2.2959 2.2939 2.3497 2.2702 0.0223 3.400
ID5 N = 100 ; PrM = 1 2.2848 2.2866 2.3046 2.2660 0.0140 5.700
ID6 N = 150 ; PrM = 1 2.2830 2.2850 2.2955 2.2687 0.0085 5.799
ID7 N = 50 ; PrM = 1.5 2.2893 2.2866 2.3112 2.2622 0.0163 5.100
ID8 N = 100 ; PrM = 1.5 2.2808 2.2800 2.2994 2.2579 0.0138 6.100
ID9 N = 150 ; PrM = 1.5 2.2857 2.2855 2.3036 2.2657 0.0121 4.899

p-value 0.2132

In order to establish the best behaviour amongst the configurations, a statistical
significance hypothesis test was conducted. The average ranks computed through the
Friedman’s test and the p-value obtained (a value bigger than 0.05 implies that the null
hypothesis cannot be rejected, suggesting that all configurations perform in a similar way)
are shown in Table 5. It can be seen that the configuration with identifier ID8 (population
of 100 individuals and mutation probability of 1.5 gene per chromosome) presents the best
average rank for the binary encoding with one point crossover. It can be seen that the
configuration with identifier ID2 (population of 100 individuals and mutation probability
of 0.5 gene per chromosome) presents the best average rank both for the binary encoding
with two point crossover and for the binary encoding with uniform crossover. These
configurations were selected for the final comparison study among encoding configurations
which is shown later. The best accumulated non-dominated solutions obtained through
the final generation of the evolutionary process for all executions and all configurations
were used to compute the accumulated Hypervolume whose values were 2.4142, 2.4298
and 2.3984 for the binary encoding with one point, two point and uniform crossover,
respectively. As expected, the values are higher than 2.3394, 2.3627 and 2.3497, the
maximum values shown in Table 5, respectively.
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6.1.3. Gray Encoding

The results of using Gray encoding with one point, two point and uniform crossover
are shown below. The computational time consumed by each one is shown in Table 3. The
relationship between method configurations and identifiers is shown in Table 6. Moreover,
statistical information in relation to the Hypervolume value at the end of the evolutionary
process is shown. For the Gray encoding with one point crossover (G1PX), it is possible
to conclude that the configuration with identifier ID2 (population of 100 individuals and
mutation probability of 0.5 gene per chromosome) presents the highest Hypervolume
average value, the highest Hypervolume median value and the highest Hypervolume
maximum value. The configuration with identifier ID4 (population of 50 individuals and
mutation probability of one gene per chromosome) presents both the highest Hypervolume
minimum value and the lowest Hypervolume standard deviation value.

For the Gray encoding with two point crossover (G2PX), it is possible to conclude
that the configuration with identifier ID1 (population of 50 individuals and mutation
probability of 0.5 gene per chromosome) presents the highest Hypervolume average
value, the highest Hypervolume median value and the highest Hypervolume minimum
value. The configuration with identifier ID9 (population of 150 individuals and mutation
probability of 1.5 gene per chromosome) presents the highest Hypervolume maximum
value and the configuration with identifier ID5 (population of 100 individuals and mutation
probability of one gene per chromosome) presents the lowest Hypervolume standard
deviation value.

For the Gray encoding with uniform crossover (GUX), it is possible to conclude that
the configuration with identifier ID4 (population of 50 individuals and mutation probability
of one gene per chromosome) presents both the highest Hypervolume average value and
the highest Hypervolume median value. The configuration with identifier ID5 (population
of 100 individuals and mutation probability of 1 gene per chromosome) presents the
highest Hypervolume maximum value, the configuration with identifier ID6 (population of
150 individuals and mutation probability of one gene per chromosome) presents the highest
Hypervolume minimum value and the configuration with identifier ID2 (population of
100 individuals and mutation probability of 0.5 gene per chromosome) presents the lowest
Hypervolume standard deviation value.

In order to establish the best behaviour amongst the configurations, a statistical
significance hypothesis test was conducted. The average ranks computed through the
Friedman’s test and the p-value obtained (a value bigger than 0.05 implies that the null
hypothesis cannot be rejected, suggesting that all configurations perform in a similar way)
are shown in Table 6. It can be seen that the configuration with identifier ID5 (population
of 100 individuals and mutation probability of 1 gene per chromosome) presents the best
average rank for the Gray encoding with one point crossover. It can be seen that the
configuration with identifier ID1 (population of 50 individuals and mutation probability
of 0.5 gene per chromosome) presents the best average rank for the Gray encoding with
two point crossover. It can be seen that the configuration with identifier ID4 (population
of 50 individuals and mutation probability of one gene per chromosome) presents the
best average rank for the Gray encoding with uniform crossover. These configurations
were selected for the final comparison study among encoding configurations, which is
shown later. The best accumulated non-dominated solutions obtained through the final
generation of the evolutionary process for all executions and all configurations were used
to compute the accumulated Hypervolume whose values were 2.4011, 2.3982 and 2.3829
for the Gray encoding with one point, two point and uniform crossover, respectively. As
expected, the values are higher than 2.3556, 2.3364 and 2.3165, the maximum values shown
in Table 6, respectively.
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Table 6. Hypervolume Statistics (Gray Encoding).

Encoding Identifier Configuration Average Median Max. Min. St. D. Friedman’s Test
Av. Rank

G1PX

ID1 N = 50 ; PrM = 0.5 2.2833 2.2838 2.2929 2.2710 0.0064 5.500
ID2 N = 100 ; PrM = 0.5 2.2990 2.3010 2.3556 2.2640 0.0252 3.600
ID3 N = 150 ; PrM = 0.5 2.2815 2.2850 2.2951 2.2626 0.0099 6.200
ID4 N = 50 ; PrM = 1 2.2865 2.2834 2.3017 2.2762 0.0083 5.200
ID5 N = 100 ; PrM = 1 2.2989 2.2986 2.3347 2.2652 0.0186 3.100
ID6 N = 150 ; PrM = 1 2.2812 2.2791 2.3043 2.2611 0.0117 6.000
ID7 N = 50 ; PrM = 1.5 2.2882 2.2916 2.3171 2.2526 0.0187 4.200
ID8 N = 100 ; PrM = 1.5 2.2786 2.2804 2.2992 2.2608 0.0137 6.100
ID9 N = 150 ; PrM = 1.5 2.2874 2.2820 2.3180 2.2706 0.0155 5.100

p-value 0.0943

G2PX

ID1 N = 50 ; PrM = 0.5 2.2947 2.2971 2.3192 2.2757 0.0128 3.700
ID2 N = 100 ; PrM = 0.5 2.2802 2.2814 2.2953 2.2592 0.0121 6.500
ID3 N = 150 ; PrM = 0.5 2.2856 2.2895 2.2978 2.2519 0.0136 4.299
ID4 N = 50 ; PrM = 1 2.2912 2.2868 2.3186 2.2659 0.0192 4.900
ID5 N = 100 ; PrM = 1 2.2832 2.2835 2.2951 2.2690 0.0070 5.600
ID6 N = 150 ; PrM = 1 2.2899 2.2913 2.3256 2.2640 0.0193 4.100
ID7 N = 50 ; PrM = 1.5 2.2866 2.2880 2.3132 2.2617 0.0169 4.800
ID8 N = 100 ; PrM = 1.5 2.2809 2.2813 2.3140 2.2585 0.0148 6.500
ID9 N = 150 ; PrM = 1.5 2.2920 2.2912 2.3364 2.2739 0.0169 4.600

p-value 0.2164

GUX

ID1 N = 50 ; PrM = 0.5 2.2862 2.2892 2.3088 2.2540 0.0180 4.300
ID2 N = 100 ; PrM = 0.5 2.2828 2.2813 2.2967 2.2696 0.0079 5.100
ID3 N = 150 ; PrM = 0.5 2.2885 2.2922 2.3077 2.2666 0.0136 4.100
ID4 N = 50 ; PrM = 1 2.2907 2.2939 2.3134 2.2683 0.0156 4.000
ID5 N = 100 ; PrM = 1 2.2879 2.2858 2.3165 2.2611 0.0187 4.699
ID6 N = 150 ; PrM = 1 2.2835 2.2816 2.3048 2.2701 0.0120 5.400
ID7 N = 50 ; PrM = 1.5 2.2862 2.2852 2.3056 2.2608 0.0143 5.600
ID8 N = 100 ; PrM = 1.5 2.2852 2.2851 2.3068 2.2524 0.0153 5.100
ID9 N = 150 ; PrM = 1.5 2.2755 2.2700 2.3064 2.2638 0.0142 6.700

p-value 0.4572

6.1.4. Comparing Encoding Configurations

The total computational time consumed is shown in Table 3. The computational
cost shows the importance of using the cluster. Previously, configurations with the best
average rank according to the Friedman’s test were selected to be compared globally. These
configurations are shown in Table 7.

Table 7. Hypervolume statistics (Encoding experiment).

Identifier Description Configuration Average Median Max. Min. St. D. Friedman’s Test
Av. Rank

ID1 Real N = 50 ; PrM = 1 2.2927 2.2932 2.3113 2.2710 0.0117 4.600
ID2 Binary 1P N = 100 ; PrM = 1.5 2.2970 2.3008 2.3126 2.2708 0.0134 4.000
ID3 Binary 2P N = 100 ; PrM = 0.5 2.3013 2.3051 2.3260 2.2714 0.0172 3.000
ID4 Binary U N = 100 ; PrM = 0.5 2.2954 2.3000 2.3141 2.2647 0.0163 4.199
ID5 Gray 1P N = 100 ; PrM = 1 2.2989 2.2986 2.3347 2.2652 0.0186 3.500
ID6 Gray 2P N = 50 ; PrM = 0.5 2.2947 2.2971 2.3192 2.2757 0.0128 4.000
ID7 Gray U N = 50 ; PrM = 1 2.2907 2.2939 2.3134 2.2683 0.0156 4.699

p-value 0.5979
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The Hypervolume average values evolution versus the evaluations number is shown
in Figure 2a. The detail for the final evaluations (last million fitness function evaluations,
from 9 to 10 million) is shown in Figure 2b. It can be seen that the configuration with
identifier ID3 (with binary encoding and two point crossover, population of 100 individuals
and mutation probability of 0.5 gene per chromosome) reaches the highest Hypervolume
average value.

(a) Hypervolume Average vs. evaluations

(b) Hypervolume Average vs. evaluations, detail (last million evaluations displayed)

Figure 2. Hypervolume Average vs. evaluations (encoding experiment).
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Box plots of the Hypervolume values distribution at the end of the process are shown
in Figure 3. Statistical information in relation to the Hypervolume value at the final of the
evolutionary process is shown in Table 7. It can be seen that the configuration with identifier
ID3 (with Binary encoding and two point crossover, population of 100 individuals and
mutation probability of 0.5 gene per chromosome) presents both the highest Hypervolume
average value and the highest Hypervolume median value, the configuration with identifier
ID5 (with Gray encoding and one point crossover, population of 100 individuals and
mutation probability of one gene per chromosome) presents the highest Hypervolume
maximum value, the configuration with identifier ID6 (with Gray encoding and two
point crossover, population of 50 individuals and mutation probability of 0.5 gene per
chromosome) presents the highest Hypervolume minimum value and the configuration
with identifier ID1 (with real encoding, population of 50 individuals and mutation probability
of one gene per chromosome) presents the lowest Hypervolume standard deviation value.

Figure 3. Box plots of the final Hypervolume (encoding experiment).

In order to establish whether one of the configurations performs better than any other,
a statistical significance hypothesis test was conducted. The average ranks computed
through the Friedman’s test are shown in Table 7. It can be seen that the configuration with
identifier ID3 (with binary encoding and two point crossover, population of 100 individuals
and mutation probability of 0.5 gene per chromosome) presents the best average rank.
However, the p-value computed (0.5979) implies that the null hypothesis (H0) cannot be
rejected (p-value > 0.05), so it is possible to conclude that, in the studied conditions, there
is no configuration that performs better than another.

The best accumulated non-dominated solutions obtained for all encodings and
configurations were used to compute the accumulated Hypervolume, whose value was
2.4553. As expected, the value is higher than 2.4298, the maximum accumulated value
obtained after the evolutionary process for the standard binary encoding with two point
crossover. This is shown in Table 8.
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Table 8. Maximum accumulated Hypervolume value (encoding experiment).

Encoding Hypervolume Accumulated Value

Real 2.3943
Binary 1 Point Crossover 2.4142
Binary 2 Point Crossover 2.4298
Binary Uniform Crossover 2.3984
Gray 1 Point Crossover 2.4011
Gray 2 Point Crossover 2.3982
Gray Uniform Crossover 2.3829

Global 2.4553

6.2. Accuracy Experiment

In the first experiment, a thorough comparison of the performances of encodings was
developed using the hour as a time unit. Although non-significant differences among
performances were found, the best average rank using the Friedman’s test was presented
by the standard binary encoding. For this reason, the results achieved for the standard
binary encoding are used in the present experiment to compare the performance using the
day and the week as time units.

6.2.1. Standard Binary Encoding (Days)

The results of using standard binary encoding with one point, two point and uniform
crossover with the day as a time unit are shown below. The computational time consumed
by each one is shown in Table 9.

Table 9. Computational time consumed.

Encoding Time Unit Average Time Sequential Time

Binary 1PX Hour 2 days, 18 h and 57 min 8 months, 7 days, 18 h and 48 min.
Binary 2PX Hour 3 days, 2 h and 39 min 9 months, 6 days, 5 h and 52 min.
Binary UX Hour 3 days and 39 min 8 months, 29 days, 3 h and 8 min.
Binary 1PX Day 2 days, 22 h and 3 min 8 months, 19 days, 9 h and 14 min.
Binary 2PX Day 2 days, 19 h and 13 min 8 months, 8 days, 18 h and 18 min.
Binary UX Day 2 days, 19 h and 13 min 8 months, 8 days, 18 h and 55 min.
Binary 1PX Week 2 days, 18 h and 3 min 8 months, 4 days, 9 h and 39 min.
Binary 2PX Week 2 days, 19 h and 21 min 8 months, 9 days, 6 h and 55 min.
Binary UX Week 2 days, 19 h and 20 min 8 months, 9 days, 4 h and 40 min.

Total 2 days, 20 h and 53 min 6 years, 4 months, 12 days, 22 h and 41 min.

The relationship between method configurations and identifiers is shown in Table 10.
Moreover, statistical information in relation to the Hypervolume value at the final of the
evolutionary process is shown. For the binary encoding with one point crossover and the
day as a time unit (B1PX-D), it is possible to conclude that the configuration with identifier
ID6 (population of 150 individuals and mutation probability of one gene per chromosome)
presents the highest Hypervolume average value, the highest Hypervolume minimum
value and the lowest Hypervolume standard deviation. The configuration with identifier
ID9 (population of 150 individuals and mutation probability of 1.5 gene per chromosome)
presents the highest Hypervolume median value and the configuration with identifier
ID1 (population of 50 individuals and mutation probability of 0.5 gene per chromosome)
presents the highest Hypervolume maximum value.

For the binary encoding with two point crossover and the day as a time unit (B2PX-D), it
is possible to conclude that the configuration with identifier ID4 (population of 50 individuals
and mutation probability of one gene per chromosome) presents the highest Hypervolume
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average value, the configuration with identifier ID6 (population of 150 individuals and
mutation probability of one gene per chromosome) presents the highest Hypervolume
median value, the configuration with identifier ID9 (population of 150 individuals and
mutation probability of 1.5 gene per chromosome) presents the highest Hypervolume
maximum value and the configuration with identifier ID3 (population of 150 individuals
and mutation probability of 0.5 gene per chromosome) presents both the highest Hypervolume
minimum value and the lowest Hypervolume standard deviation value.

For the binary encoding with uniform crossover and the day as a time unit (BUX-D),
it is possible to conclude that the configurations with identifiers ID6 (population of
150 individuals and mutation probability of one gene per chromosome) and ID8 (population
of 100 individuals and mutation probability of 1.5 gene per chromosome) present the
highest Hypervolume average value, the configuration with identifier ID1 (population
of 50 individuals and mutation probability of 0.5 gene per chromosome) presents the
highest Hypervolume median value, the configuration with identifier ID9 (population
of 150 individuals and mutation probability of 1.5 gene per chromosome) presents the
highest Hypervolume maximum value, the configuration with identifier ID5 (population of
100 individuals and mutation probability of one gene per chromosome) presents the highest
Hypervolume minimum value, and the configuration with identifier ID7 (population of
50 individuals and mutation probability of 1.5 gene per chromosome) presents the lowest
Hypervolume standard deviation value.

Table 10. Hypervolume statistics (Binary encoding-Days).

Encoding Identifier Configuration Average Median Max. Min. St. D. Friedman’s Test
Av. Rank

B1PX-D

ID1 N = 50 ; PrM = 0.5 2.2834 2.2781 2.3430 2.2655 0.0220 5.800
ID2 N = 100 ; PrM = 0.5 2.2942 2.2911 2.3198 2.2788 0.0133 4.100
ID3 N = 150 ; PrM = 0.5 2.2785 2.2834 2.2934 2.2563 0.0126 6.600
ID4 N = 50 ; PrM = 1 2.2819 2.2795 2.3127 2.2622 0.0152 5.800
ID5 N = 100 ; PrM = 1 2.2896 2.2870 2.3188 2.2621 0.0184 4.500
ID6 N = 150 ; PrM = 1 2.2964 2.2941 2.3193 2.2804 0.0103 3.200
ID7 N = 50 ; PrM = 1.5 2.2922 2.2932 2.3239 2.2707 0.0177 4.400
ID8 N = 100 ; PrM = 1.5 2.2776 2.2793 2.3057 2.2530 0.0171 6.800
ID9 N = 150 ; PrM = 1.5 2.2939 2.2947 2.3107 2.2758 0.0135 3.800

p-value 0.0246

B2PX-D

ID1 N = 50 ; PrM = 0.5 2.2838 2.2795 2.3043 2.2681 0.0123 5.400
ID2 N = 100 ; PrM = 0.5 2.2783 2.2785 2.2947 2.2609 0.0106 6.600
ID3 N = 150 ; PrM = 0.5 2.2867 2.2880 2.3043 2.2757 0.0084 4.300
ID4 N = 50 ; PrM = 1 2.2930 2.2865 2.3173 2.2746 0.0176 4.200
ID5 N = 100 ; PrM = 1 2.2874 2.2831 2.3188 2.2652 0.0192 5.399
ID6 N = 150 ; PrM = 1 2.2916 2.2937 2.3150 2.2712 0.0152 4.100
ID7 N = 50 ; PrM = 1.5 2.2877 2.2849 2.3249 2.2693 0.0161 4.600
ID8 N = 100 ; PrM = 1.5 2.2841 2.2817 2.3136 2.2658 0.0133 5.300
ID9 N = 150 ; PrM = 1.5 2.2887 2.2826 2.3372 2.2651 0.0216 5.100

p-value 0.5612

BUX-D

ID1 N = 50 ; PrM = 0.5 2.2918 2.2948 2.3152 2.2643 0.0168 4.200
ID2 N = 100 ; PrM = 0.5 2.2897 2.2865 2.3356 2.2602 0.0198 4.699
ID3 N = 150 ; PrM = 0.5 2.2844 2.2866 2.3104 2.2522 0.0179 5.600
ID4 N = 50 ; PrM = 1 2.2798 2.2732 2.3078 2.2601 0.0160 6.400
ID5 N = 100 ; PrM = 1 2.2897 2.2893 2.3127 2.2729 0.0151 4.800
ID6 N = 150 ; PrM = 1 2.2923 2.2907 2.3333 2.2666 0.0219 4.700
ID7 N = 50 ; PrM = 1.5 2.2894 2.2880 2.3201 2.2691 0.0138 5.100
ID8 N = 100 ; PrM = 1.5 2.2923 2.2901 2.3279 2.2637 0.0183 5.000
ID9 N = 150 ; PrM = 1.5 2.2908 2.2863 2.3461 2.2606 0.0249 4.500

p-value 0.8007
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In order to establish the best behaviour amongst the range of configurations, a
statistical significance hypothesis test was conducted. The average ranks computed through
the Friedman’s test and the p-value obtained (a value bigger than 0.05 implies that the null
hypothesis cannot be rejected, suggesting that all configurations perform in a similar way)
are shown in Table 10. It can be seen that the configuration with identifier ID6 (population
of 150 individuals and mutation probability of one gene per chromosome) presents the
best average rank for the binary encoding with one point crossover and the day as a time
unit. Moreover, the p-value obtained of 0.0246 explains that the null Hypothesis can be
rejected so, in this case, the configuration ID6 performs better than any other configuration.
In order to find the concrete pairwise comparisons that produce differences, a statistical
significance analysis using the Wilcoxon signed-rank test was run as explained by Benavoli
et al. [70]. The results of using such a test, in which the configuration ID6 is compared
with the rest of configurations, is shown in Table 11. It can be seen that configuration ID6
performs better than the configurations ID3, ID4 and ID8.

Table 11. p-values from Wilcoxon signed-rank test.

Comparison p-Value Conclusion

ID3 versus ID6 0.0059 Significant difference found
ID4 versus ID6 0.0371 Significant difference found
ID6 versus ID8 0.0371 Significant difference found
ID1 versus ID6 0.0840 The null hypothesis cannot be rejected
ID5 versus ID6 0.3223 The null hypothesis cannot be rejected
ID2 versus ID6 0.3750 The null hypothesis cannot be rejected
ID6 versus ID7 0.4922 The null hypothesis cannot be rejected
ID6 versus ID9 0.6250 The null hypothesis cannot be rejected

Regarding the binary encoding with two point crossover and the day as a time unit,
the same configuration (ID6) presents the best average rank. Finally, it can be seen that the
configuration with identifier ID1 (population of 50 individuals and mutation probability
of 0.5 gene per chromosome) presents the best average rank for the binary encoding with
uniform crossover and the day as a time unit. In each case, the best configurations were
selected for the final comparison study between the accuracy level encodings.

The best accumulated non-dominated solutions obtained through the final generation
of the evolutionary process for all executions and all configurations were used to compute
the accumulated Hypervolume whose values were 2.4007, 2.3942 and 2.3984 for the
binary encoding with one point, two point and uniform crossover with the day as a
time unit, respectively. As expected, the values are higher than 2.3430, 2.3372 and 2.3461,
the maximum values shown in Table 10, respectively.

6.2.2. Standard Binary Encoding (Weeks)

The results of using standard binary encoding with one point, two point and uniform
crossover and the week as a time unit are shown below. The computational time consumed
by each one is shown in Table 9. The relationship between method configurations and
identifiers is shown in Table 12. Statistical information in relation to the Hypervolume
value at the final of the evolutionary process is also shown. For the binary encoding
with one point crossover and the week as a time unit (B1PX-W), it is possible to conclude
that the configuration with identifier ID1 (population of 50 individuals and mutation
probability of 0.5 gene per chromosome) presents the highest Hypervolume average
value, the highest Hypervolume median value and the highest Hypervolume maximum
value. The configuration with identifier ID5 (population of 100 individuals and mutation
probability of one gene per chromosome) presents both the highest Hypervolume minimum
value and the lowest Hypervolume standard deviation value.

For the binary encoding with two point crossover and the week as a time unit
(B2PX-W), it is possible to conclude that the configuration with identifier ID7 (population



Mathematics 2021, 9, 1751 28 of 39

of 50 individuals and mutation probability of 1.5 gene per chromosome) presents both the
highest Hypervolume average value and the highest Hypervolume maximum value. The
configuration with identifier ID1 (population of 50 individuals and mutation probability
of 0.5 gene per chromosome) presents both the highest Hypervolume median value and
the highest Hypervolume minimum value. Finally, the configuration with identifier ID5
(population of 100 individuals and mutation probability of one gene per chromosome)
presents the lowest Hypervolume standard deviation value.

For the binary encoding with uniform crossover and the week as a time unit (BUX-W), it
is possible to conclude that the configuration with identifier ID8 (population of 100 individuals
and mutation probability of 1.5 gene per chromosome) presents the highest Hypervolume
average value, the highest Hypervolume median value and the highest Hypervolume
minimum value. The configuration with identifier ID1 (population of 50 individuals and
mutation probability of 0.5 gene per chromosome) presents the highest Hypervolume
minimum value and the configuration with identifier ID2 (population of 100 individuals
and mutation probability of 0.5 gene per chromosome) presents the lowest Hypervolume
standard deviation value.

Table 12. Hypervolume statistics (Binary encoding-Weeks).

Encoding Identifier Configuration Average Median Max. Min. St. D. Friedman’s Test
Av. Rank

B1PX-W

ID1 N = 50 ; PrM = 0.5 2.2957 2.2935 2.3430 2.2561 0.0250 4.300
ID2 N = 100 ; PrM = 0.5 2.2872 2.2873 2.3127 2.2665 0.0142 5.100
ID3 N = 150 ; PrM = 0.5 2.2897 2.2808 2.3252 2.2623 0.0212 5.100
ID4 N = 50 ; PrM = 1 2.2812 2.2805 2.2977 2.2520 0.0157 5.799
ID5 N = 100 ; PrM = 1 2.2907 2.2893 2.3007 2.2812 0.0060 3.999
ID6 N = 150 ; PrM = 1 2.2825 2.2825 2.3004 2.2679 0.0101 6.100
ID7 N = 50 ; PrM = 1.5 2.2890 2.2899 2.3110 2.2597 0.0164 4.900
ID8 N = 100 ; PrM = 1.5 2.2874 2.2848 2.3066 2.2690 0.0123 5.000
ID9 N = 150 ; PrM = 1.5 2.2888 2.2892 2.3176 2.2634 0.0155 4.700

p-value 0.7979

B2PX-W

ID1 N = 50 ; PrM = 0.5 2.2917 2.2911 2.3101 2.2764 0.0121 4.000
ID2 N = 100 ; PrM = 0.5 2.2858 2.2858 2.3013 2.2671 0.0122 5.300
ID3 N = 150 ; PrM = 0.5 2.2892 2.2869 2.3237 2.2567 0.0250 4.900
ID4 N = 50 ; PrM = 1 2.2797 2.2743 2.3014 2.2703 0.0108 6.299
ID5 N = 100 ; PrM = 1 2.2840 2.2838 2.2965 2.2665 0.0085 5.200
ID6 N = 150 ; PrM = 1 2.2793 2.2780 2.3066 2.2502 0.0147 6.200
ID7 N = 50 ; PrM = 1.5 2.2921 2.2817 2.3465 2.2709 0.0246 4.899
ID8 N = 100 ; PrM = 1.5 2.2895 2.2880 2.3198 2.2546 0.0168 4.001
ID9 N = 150 ; PrM = 1.5 2.2918 2.2854 2.3130 2.2710 0.0145 4.200

p-value 0.4439

BUX-W

ID1 N = 50 ; PrM = 0.5 2.2894 2.2847 2.3336 2.2659 0.0197 5.500
ID2 N = 100 ; PrM = 0.5 2.2925 2.2922 2.3144 2.2756 0.0113 4.399
ID3 N = 150 ; PrM = 0.5 2.2911 2.2932 2.3216 2.2664 0.0156 4.399
ID4 N = 50 ; PrM = 1 2.2858 2.2836 2.3057 2.2660 0.0128 5.499
ID5 N = 100 ; PrM = 1 2.2826 2.2834 2.3144 2.2631 0.0140 6.700
ID6 N = 150 ; PrM = 1 2.2854 2.2857 2.3122 2.2645 0.0164 5.499
ID7 N = 50 ; PrM = 1.5 2.2893 2.2887 2.3094 2.2681 0.0125 4.899
ID8 N = 100 ; PrM = 1.5 2.3009 2.2942 2.3316 2.2870 0.0145 3.400
ID9 N = 150 ; PrM = 1.5 2.2921 2.2862 2.3163 2.2774 0.0143 4.700

p-value 0.3128

In order to establish the best behaviour amongst configurations, a statistical significance
hypothesis test was conducted. The average ranks computed through the Friedman’s test
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and the p-value obtained (a value bigger than 0.05 implies that the null hypothesis cannot be
rejected, suggesting that all configurations perform in a similar way) are shown in Table 12.
It can be seen that the configuration with identifier ID5 (population of 100 individuals
and mutation probability of one gene per chromosome) presents the best average rank
for the binary encoding with one point crossover and the week as a time unit. It can be
seen that the configuration with identifier ID1 (population of 50 individuals and mutation
probability of 0.5 gene per chromosome) presents the best average rank for the binary
encoding with two point crossover and the week as a time unit. It can be seen that the
configuration with identifier ID8 (population of 100 individuals and mutation probability
of 1.5 gene per chromosome) presents the best average rank for the binary encoding with
uniform crossover and the week as a time unit. These configurations were selected for the
final comparison study of the accuracy-level configurations.

The best accumulated non-dominated solutions obtained through the final generation
of the evolutionary process for all executions and all configurations were used to compute
the accumulated Hypervolume whose values were 2.4047, 2.4285 and 2.4037 for the binary
encoding with one point, two point and uniform crossover with the week as a time
unit, respectively. As expected, the values are higher than 2.3430, 2.3465 and 2.3336, the
maximum values shown in Table 12, respectively.

6.2.3. Comparing Accuracy-Level Configurations

The global computational time consumed is shown in Table 9. The computational
cost shows the importance of using the cluster. Previously, configurations with the best
average rank according to the Friedman’s test were selected to be globally compared. These
configurations are shown in Table 13.

Table 13. Hypervolume statistics (accuracy experiment).

Id. Description Configuration Average Median Max. Min. St. D. Friedman’s Test
Av. Rank

ID1 Binary 1P (hour) N = 100 ; PrM = 1.5 2.2970 2.3008 2.3126 2.2708 0.0134 4.700
ID2 Binary 2P (hour) N = 100 ; PrM = 0.5 2.3013 2.3051 2.3260 2.2714 0.0172 3.699
ID3 Binary U (hour) N = 100 ; PrM = 0.5 2.2954 2.3000 2.3141 2.2647 0.0163 4.500
ID4 Binary 1P (day) N = 150 ; PrM = 1.0 2.2964 2.2941 2.3193 2.2804 0.0103 5.000
ID5 Binary 2P (day) N = 150 ; PrM = 1.0 2.2916 2.2937 2.3150 2.2712 0.0152 5.800
ID6 Binary U (day) N = 50 ; PrM = 0.5 2.2918 2.2948 2.3152 2.2643 0.0168 5.300
ID7 Binary 1P (week) N = 100 ; PrM = 1.0 2.2907 2.2893 2.3007 2.2812 0.0060 6.200
ID8 Binary 2P (week) N = 50 ; PrM = 0.5 2.2917 2.2911 2.3101 2.2764 0.0121 5.900
ID9 Binary U (week) N = 100 ; PrM = 1.5 2.3009 2.2942 2.3316 2.2870 0.0145 3.900

p-value 0.4053

The Hypervolume average values evolution versus the evaluations number is shown
in Figure 4a. The detail for the final evaluations (last million fitness function evaluations,
from 9 to 10 million) is shown in Figure 4b. It can be seen that the configuration with
identifier ID2 (with Binary encoding, two point crossover, the hour as a time unit, population
of 100 individuals and mutation probability of 0.5 gene per chromosome) reaches the
highest Hypervolume average value.
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(a) Hypervolume Average vs. evaluations

(b) Hypervolume Average vs. evaluations, detail (last million evaluations displayed)

Figure 4. Hypervolume Average vs. evaluations (accuracy experiment).

Box plots of the Hypervolume values distribution at the end of the process are shown
in Figure 5. They are ordered from left to right in relation to time units of hours (H), days
(D) and weeks (W) and crossover types of one point (1PX), two point (2PX) and uniform
crossover (UX). It can be seen that the medians are ordered from biggest to smallest for each
group of crossover. The greater the accuracy the bigger the Hypervolume median value (it is
greater for hours than for days and greater for days than for weeks). Statistical information
in relation to the Hypervolume value at the end of the evolutionary process is shown in
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Table 13. It can be seen that the configuration with identifier ID2 (with binary encoding, two
point crossover and the hour as a time unit, population of 100 individuals and mutation
probability of 0.5 gene per chromosome) presents both the highest Hypervolume average
value and the highest Hypervolume median value, the configuration with identifier ID9
(with binary encoding, uniform crossover and the week as a time unit, population of
100 individuals and mutation probability of 1.5 gene per chromosome) presents both the
highest Hypervolume maximum value and the highest Hypervolume minimum value.
The configuration with identifier ID7 (with binary encoding, one point crossover and the
week as a time unit, population of 100 individuals and mutation probability of one gene
per chromosome) presents the lowest Hypervolume standard deviation.

Figure 5. Box plots of the final Hypervolume (accuracy experiment).

In order to establish whether one of the configurations performs better than any other,
a statistical significance hypothesis test was conducted. The average ranks computed
through the Friedman’s test are shown in Table 13. It can be seen that the configuration
with identifier ID2 (with Binary encoding, two point crossover and the hour as a time
unit, population of 100 individuals and mutation probability of 0.5 gene per chromosome)
presents the best average rank. However, the p-value computed (0.4053) implies that the
null hypothesis (H0) cannot be rejected (p-value > 0.05), so it is possible to conclude that,
in the studied conditions, there is no configuration that performs better than any other.

The best accumulated non-dominated solutions obtained were used to compute the
accumulated Hypervolume, whose value was 2.4046. As expected, the value is higher than
2.4298, the maximum accumulated value obtained after the evolutionary process for the
standard binary encoding with two point crossover and the hour as a time unit. This is
shown in Table 14.
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Table 14. Maximum accumulated Hypervolume value (accuracy experiment).

Encoding Time Unit Hypervolume Accumulated Value

Binary 1 Point Crossover Hour 2.4142
Binary 2 Point Crossover Hour 2.4298
Binary Uniform Crossover Hour 2.3984
Binary 1 Point Crossover Day 2.4007
Binary 2 Point Crossover Day 2.3942
Binary Uniform Crossover Day 2.3984
Binary 1 Point Crossover Week 2.4047
Binary 2 Point Crossover Week 2.4285
Binary Uniform Crossover Week 2.4037

Global 2.4646

6.3. Accumulated Non-Dominated Set of Designs

The non-dominated solutions to the problem provided at the end of the evolutionary
process for all executions, all configurations, all encodings and time units are shown in
Figure 6. All optimum solutions belonging to the achieved non-dominated front are shown
in Table 15. Unavailability (Q) is shown as a fraction, Cost is shown in economic units and
the rest of the variables represent, for the respective devices, the optimum Time To Start a
Preventive Maintenance activity with the hour, day or week as a time unit.

Figure 6. Non-dominated front.
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Table 15. Optimum solutions (encoding experiment).

Id Q Cost [eu] Time Unit V1 [h] P2 [h] P3 [h] V4 [h] V5 [h] V6 [h] V7 [h]

1 0.002720 823.38 Hours 25,408 0 8633 0 34,179 34,903 31,386
2 0.002713 835.75 Hours 29,225 0 8633 0 27,070 33,454 33,690
3 0.002591 986.88 Days 1285 0 353 902 1441 967 1386
4 0.002576 988.00 Weeks 127 0 47 165 206 172 203
5 0.002295 992.75 Days 1435 0 350 830 1088 1459 1454
6 0.001495 1360.50 Hours 34,746 8239 8408 0 32,676 31,769 31,484
7 0.001334 1363.75 Days 1394 360 315 0 1125 1301 1026
8 0.001276 1424.25 Weeks 204 50 37 0 174 173 188
9 0.001189 1431.75 Hours 31,040 8617 8103 0 34,787 31,445 29,929

10 0.001174 1449.00 Days 178 51 50 0 182 171 195
11 0.001112 1496.12 Weeks 112 48 48 0 176 196 144
12 0.001056 1512.50 Days 880 358 354 1186 1020 1346 1098
13 0.001039 1524.00 Weeks 162 45 42 195 147 176 189
14 0.001002 1524.62 Hours 28,042 7228 6549 30,777 20,951 31,779 34,982
15 0.000939 1528.88 Hours 29,939 7028 7904 21,690 25,711 34,814 34,791
16 0.000913 1530.38 Weeks 194 47 49 103 137 145 179
17 0.000835 1567.75 Days 1028 363 340 1280 1430 986 1326
18 0.000813 1611.38 Hours 22,516 5955 6298 17,237 29,568 27,075 22,757
19 0.000776 1667.25 Hours 32,355 7185 8384 27,489 26,949 32,700 32,770
20 0.000771 1741.00 Hours 27,443 7556 8520 30,003 30,056 30,579 21,639
21 0.000742 1764.75 Hours 22,776 8696 8506 12,256 34,763 33,006 29,706
22 0.000725 1770.12 Hours 30,813 7371 8453 29,958 16,345 30,776 25,358

The solution with the lowest Cost (ID1) (823.38 economic units) represents the biggest
Unavailability (0.002720). These values are followed by periodic optimum times (using
the hour as a time unit in this case) measured from the moment in which the system
mission time starts (Time To Perform a Preventive Maintenance activity (TRP) is not
included). For solution ID1, it can be seen that periodic optimum Times To Start a
Preventive Maintenance activity (TP) for devices P2 and V4 are not supplied. This is
because the design alternative does not include such devices. The opposite case shows the
biggest Cost (ID22) (1770.12 economic units) and the lowest Unavailability (0.000725). For
solution ID22, periodic optimum Times To Start a Preventive Maintenance activity (TP) are
supplied for all devices. This is because the design alternative includes devices P2 and V4.
Other optimum solutions were found in these two solutions and can be seen in Table 15.
The decision makers will need to decide which is the preferable design for them, taking
into account their individual requirements.

Moreover, solutions were clustered in Figure 7 according to their final design. Solutions
are shown from left to right and in ascending order in relation to the Cost from ID1 to ID22.
The solutions contained in Cluster 1 (the solutions 1 to 2, see also Table 15) are the solutions
in which non-redundant devices were included in the design. In this case, the system
contains exclusively devices placed in series. These solutions present the lowest Cost and
the biggest Unavailability. The solutions contained in Cluster 2 (the solutions 3 to 5, see
also Table 15) are the solutions in which a redundant valve was included in the design as a
parallel device. These solutions present a bigger Cost and a lower Unavailability than the
solutions contained in Cluster 1. The solutions contained in Cluster 3 (the solutions 6 to 11,
see also Table 15) are the solutions in which a redundant pump was included in the design
as a parallel device. These solutions present a higher Cost and a lower Unavailability than
the solutions contained in Clusters 1 and 2. Finally, the solutions contained in Cluster 4
(the solutions 12 to 22, see also Table 15) are the solutions in which both a redundant valve
and a redundant pump were included in the design as parallel devices. These solutions
present the biggest Cost and the lowest Unavailability.
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Figure 7. Design alternatives (encoding experiment).

The best accumulated non-dominated solutions obtained were used to compute the
accumulated Hypervolume, whose value was 2.4651. As expected, the value is higher than
the rest of the maximum accumulated values obtained after the evolutionary process for
the encoding experiment and the accuracy experiment. This is shown in Table 16. This
value is also higher than the value obtained in [6] and could be considered as an actual
benchmark value of the case study.

Table 16. Maximum accumulated Hypervolume value.

Experiment Hypervolume Accumulated Value

Encoding 2.4553
Accuracy 2.4646

Total 2.4651

7. Conclusions

In the present paper, a methodology presented previously by the authors [6] was
used. This consists of coupling a Multi-Objective Evolutionary Algorithm and Discrete
Simulation in order to optimise simultaneously both the system design (based on redundancy
allocation) and its preventive maintenance strategy (based on determining periodic preventive
maintenance activities with regard to each device included in the design), whilst addressing
the conflict between Availability and operational Cost. The Multi-Objective Evolutionary
Algorithm gives rise to a population of individuals, each encoding one design alternative
and its preventive maintenance strategy. Each individual represents a possible solution
to the problem, which is then used to modify and evaluate the system Functionability
Profile through Discrete Simulation. The individuals evolve generation after generation
until the stopping criterion is reached. This process was applied to a technical system in
a case study in which two experiments were developed: Firstly, an encoding experiment
which consisted of comparing the performance of seven encoding types (real, standard
binary with one point, two point and uniform crossover, and Gray with one point, two
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point and uniform crossover), and secondly, an accuracy level encoding which consisted
of comparing the performance of using standard binary encoding with accuracy levels
across a range of time unit (hours, days and weeks) with impact in the form of size of the
chromosome (the smaller the time unit, the bigger the chromosome). The Multi-objective
Evolutionary Algorithm used was NSGA-II and a set of optimum non-dominated solutions
were obtained for all cases.

In conclusion, the use of the Multi-Objective Evolutionary Algorithm NSGA-II and
Discrete Simulation to address the joint optimisation of the system design and its preventive
maintenance strategy provides Availability-Cost-balanced solutions to the real world
problem studied, where data based on specific bibliography, mathematical relations and
field experience were used. The computational cost reveals the complexity of the process
and the necessity of using a computing cluster, which allowed parallel executions.

With regard to the encoding experiment, the best ordered method by the Friedman test
case based on the final Hypervolume indicator distributions was the two point crossover
standard binary encoding, although no statistically significant differences were observed.
With regard to the accuracy experiment, the best ordered method by the Friedman test
case based on the final Hypervolume indicator distributions was the two point crossover
standard binary encoding with hours as a time unit, although no statistically significant
differences were observed. From the authors’ point of view, an important conclusion arises
from this experiment, which relates to flexibility regarding the time unit to schedule the
preventive maintenance activities. Using the hour, the day or the week as a time unit does
not affect significantly the performance of the configurations so, in the studied conditions,
the preventive maintenance activities can be planned using weeks as a time unit. This
allows a better range of time for planning than if days or hours are used as a time unit.

In addition, a higher benchmark value of the case study (in terms of Hypervolume
indicator) is attained in this work as a reference.

As future work, the authors consider that these conclusions should be explored
in greater depth extending the analysis to other real world problems in the reliability
field, as well as comparing this analysis with other state of the art Multi-objective
Evolutionary Algorithms.
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Appendix A. Detailed Information of the Case Study Parameters

• Life Cycle. System mission time, expressed in hours.
• Corrective Maintenance Cost. The cost involved in developing a repair activity to

recover the system following a failure, expressed in economic units per hour.
• Preventive Maintenance Cost. The cost involved in developing a Preventive Maintenance

activity, expressed in relation to the Corrective Maintenance Cost.
• Pump TFmin. Minimum operation Time To Failure for a pump without Preventive

Maintenance, expressed in hours.
• Pump TFmax. Maximum operation Time To Failure for a pump without Preventive

Maintenance, expressed in hours.
• Pump TF λ. Failure rate for a pump, which follows an exponential failure distribution,

expressed in hours raised to the power of minus six.
• Pump TRmin. Minimum Time To Repair or duration of a Corrective Maintenance

activity for a pump, expressed in hours.
• Pump TRmax. Maximum Time To Repair or duration of a Corrective Maintenance

activity for a pump, expressed in hours.
• Pump TR µ. Mean for the normal distribution followed for the Time To Repair

assumed for a pump, expressed in hours.
• Pump TR σ. Standard deviation for the normal distribution followed for the Time To

Repair assumed for a pump, expressed in hours.
• Pump TPmin. Minimum operation Time To Start a scheduled Preventive Maintenance

activity for a pump, expressed in hours.
• Pump TPmax. Maximum operation Time To Start a scheduled Preventive Maintenance

activity for a pump, expressed in hours.
• Pump TRPmin. Minimum Time To Perform a Preventive Maintenance activity for a

pump, expressed in hours.
• Pump TRPmax. Maximum Time To Perform a Preventive Maintenance activity for a

pump, expressed in hours.
• Valve TFmin. Minimum operation Time To Failure for a valve without Preventive

Maintenance, expressed in hours.
• Valve TFmax. Maximum operation Time To Failure for a valve without Preventive

Maintenance, expressed in hours.
• Valve TF λ. Failure rate for a valve, which follows an exponential failure distribution,

expressed in hours raised to the power of minus six.
• Valve TRmin. Minimum Time To Repair or duration of a Corrective Maintenance

activity for a valve, expressed in hours.
• Valve TRmax. Maximum Time To Repair or duration of a Corrective Maintenance

activity for a valve, expressed in hours.
• Valve TR µ. Mean for the normal distribution followed for the Time To Repair

assumed for a valve, expressed in hours.
• Valve TR σ. Standard deviation for the normal distribution followed for the Time To

Repair assumed for a valve, expressed in hours.
• Valve TPmin. Minimum operation Time To Start a scheduled Preventive Maintenance

activity for a valve, expressed in hours.
• Valve TPmax. Maximum operation Time To Start a scheduled Preventive Maintenance

activity for a valve, expressed in hours.
• Valve TRPmin. Minimum Time To Perform a Preventive Maintenance activity for a

valve, expressed in hours.
• Valve TRPmax. Maximum Time To Perform a Preventive Maintenance activity for a

valve, expressed in hours.
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