Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/112258
DC FieldValueLanguage
dc.contributor.authorLeón, Raquelen_US
dc.contributor.authorFabelo, Himaren_US
dc.contributor.authorOrtega, Samuelen_US
dc.contributor.authorPiñeiro, Juan F.en_US
dc.contributor.authorSzolna, Adamen_US
dc.contributor.authorHernández, Mariaen_US
dc.contributor.authorEspino, Carlosen_US
dc.contributor.authorO’Shanahan, Aruma J.en_US
dc.contributor.authorCarrera, Daviden_US
dc.contributor.authorBisshopp, Saraen_US
dc.contributor.authorSosa, Coraliaen_US
dc.contributor.authorMarquez, Marianoen_US
dc.contributor.authorMorera, Jesusen_US
dc.contributor.authorClavo, Bernardinoen_US
dc.contributor.authorCallicó, Gustavo M.en_US
dc.date.accessioned2021-10-18T09:37:06Z-
dc.date.available2021-10-18T09:37:06Z-
dc.date.issued2021en_US
dc.identifier.issn2045-2322en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/112258-
dc.description.abstractCurrently, intraoperative guidance tools used for brain tumor resection assistance during surgery have several limitations. Hyperspectral (HS) imaging is arising as a novel imaging technique that could offer new capabilities to delineate brain tumor tissue in surgical-time. However, the HS acquisition systems have some limitations regarding spatial and spectral resolution depending on the spectral range to be captured. Image fusion techniques combine information from different sensors to obtain an HS cube with improved spatial and spectral resolution. This paper describes the contributions to HS image fusion using two push-broom HS cameras, covering the visual and near-infrared (VNIR) [400–1000 nm] and near-infrared (NIR) [900–1700 nm] spectral ranges, which are integrated into an intraoperative HS acquisition system developed to delineate brain tumor tissue during neurosurgical procedures. Both HS images were registered using intensity-based and feature-based techniques with different geometric transformations to perform the HS image fusion, obtaining an HS cube with wide spectral range [435–1638 nm]. Four HS datasets were captured to verify the image registration and the fusion process. Moreover, segmentation and classification methods were evaluated to compare the performance results between the use of the VNIR and NIR data, independently, with respect to the fused data. The results reveal that the proposed methodology for fusing VNIR–NIR data improves the classification results up to 21% of accuracy with respect to the use of each data modality independently, depending on the targeted classification problem.en_US
dc.languageengen_US
dc.relationIdentificación Hiperespectral de Tumores Cerebrales (Ithaca)en_US
dc.relationWatching the risk factors: Artificial intelligence and the prevention of chronic conditionsen_US
dc.relation.ispartofScientific Reportsen_US
dc.sourceScientific Reports [EISSN 2045-2322], v. 11 (1), 19696, (Diciembre 2021)en_US
dc.subject32 Ciencias médicasen_US
dc.subject320711 Neuropatologíaen_US
dc.subject330790 Microelectrónicaen_US
dc.subject.otherBiomedical engineeringen_US
dc.subject.otherBrain imagingen_US
dc.subject.otherCancer imagingen_US
dc.subject.otherCNS canceren_US
dc.subject.otherComputational scienceen_US
dc.subject.otherTranslational researchen_US
dc.titleVNIR–NIR hyperspectral imaging fusion targeting intraoperative brain cancer detectionen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1038/s41598-021-99220-0en_US
dc.identifier.scopus85116391415-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57212456639-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid57189323824-
dc.contributor.authorscopusid14032568700-
dc.contributor.authorscopusid8616779200-
dc.contributor.authorscopusid57208489676-
dc.contributor.authorscopusid57189372256-
dc.contributor.authorscopusid55809751300-
dc.contributor.authorscopusid57200531623-
dc.contributor.authorscopusid57200524989-
dc.contributor.authorscopusid57208493219-
dc.contributor.authorscopusid35466252100-
dc.contributor.authorscopusid57190093030-
dc.contributor.authorscopusid56006321500-
dc.identifier.eissn2045-2322-
dc.identifier.issue1-
dc.relation.volume11en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,005
dc.description.jcr4,996
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,5
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.fundingProgramConcedido-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUIBS: Farmacología Molecular y Traslacional-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-4287-3200-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0003-2522-1064-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameLeón Martín,Sonia Raquel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameZbigniew Szolna,Adam-
crisitem.author.fullNameBisshopp Alfonso, Sara-
crisitem.author.fullNameClavo Varas,Bernardino-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Appears in Collections:Artículos
Adobe PDF (5,01 MB)
Show simple item record

SCOPUSTM   
Citations

25
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

18
checked on Nov 17, 2024

Page view(s)

107
checked on Mar 16, 2024

Download(s)

27
checked on Mar 16, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.