Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/112258
Título: | VNIR–NIR hyperspectral imaging fusion targeting intraoperative brain cancer detection | Autores/as: | León, Raquel Fabelo, Himar Ortega, Samuel Piñeiro, Juan F. Szolna, Adam Hernández, Maria Espino, Carlos O’Shanahan, Aruma J. Carrera, David Bisshopp, Sara Sosa, Coralia Marquez, Mariano Morera, Jesus Clavo, Bernardino Callicó, Gustavo M. |
Clasificación UNESCO: | 32 Ciencias médicas 320711 Neuropatología 330790 Microelectrónica |
Palabras clave: | Biomedical engineering Brain imaging Cancer imaging CNS cancer Computational science, et al. |
Fecha de publicación: | 2021 | Proyectos: | Identificación Hiperespectral de Tumores Cerebrales (Ithaca) Watching the risk factors: Artificial intelligence and the prevention of chronic conditions |
Publicación seriada: | Scientific Reports | Resumen: | Currently, intraoperative guidance tools used for brain tumor resection assistance during surgery have several limitations. Hyperspectral (HS) imaging is arising as a novel imaging technique that could offer new capabilities to delineate brain tumor tissue in surgical-time. However, the HS acquisition systems have some limitations regarding spatial and spectral resolution depending on the spectral range to be captured. Image fusion techniques combine information from different sensors to obtain an HS cube with improved spatial and spectral resolution. This paper describes the contributions to HS image fusion using two push-broom HS cameras, covering the visual and near-infrared (VNIR) [400–1000 nm] and near-infrared (NIR) [900–1700 nm] spectral ranges, which are integrated into an intraoperative HS acquisition system developed to delineate brain tumor tissue during neurosurgical procedures. Both HS images were registered using intensity-based and feature-based techniques with different geometric transformations to perform the HS image fusion, obtaining an HS cube with wide spectral range [435–1638 nm]. Four HS datasets were captured to verify the image registration and the fusion process. Moreover, segmentation and classification methods were evaluated to compare the performance results between the use of the VNIR and NIR data, independently, with respect to the fused data. The results reveal that the proposed methodology for fusing VNIR–NIR data improves the classification results up to 21% of accuracy with respect to the use of each data modality independently, depending on the targeted classification problem. | URI: | http://hdl.handle.net/10553/112258 | ISSN: | 2045-2322 | DOI: | 10.1038/s41598-021-99220-0 | Fuente: | Scientific Reports [EISSN 2045-2322], v. 11 (1), 19696, (Diciembre 2021) |
Colección: | Artículos |
Citas SCOPUSTM
25
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
18
actualizado el 17-nov-2024
Visitas
107
actualizado el 16-mar-2024
Descargas
27
actualizado el 16-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.