Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/112258
Título: VNIR–NIR hyperspectral imaging fusion targeting intraoperative brain cancer detection
Autores/as: León, Raquel 
Fabelo, Himar 
Ortega, Samuel 
Piñeiro, Juan F.
Szolna, Adam 
Hernández, Maria
Espino, Carlos
O’Shanahan, Aruma J.
Carrera, David
Bisshopp, Sara 
Sosa, Coralia
Marquez, Mariano
Morera, Jesus
Clavo, Bernardino 
Callicó, Gustavo M. 
Clasificación UNESCO: 32 Ciencias médicas
320711 Neuropatología
330790 Microelectrónica
Palabras clave: Biomedical engineering
Brain imaging
Cancer imaging
CNS cancer
Computational science, et al.
Fecha de publicación: 2021
Proyectos: Identificación Hiperespectral de Tumores Cerebrales (Ithaca) 
Watching the risk factors: Artificial intelligence and the prevention of chronic conditions 
Publicación seriada: Scientific Reports 
Resumen: Currently, intraoperative guidance tools used for brain tumor resection assistance during surgery have several limitations. Hyperspectral (HS) imaging is arising as a novel imaging technique that could offer new capabilities to delineate brain tumor tissue in surgical-time. However, the HS acquisition systems have some limitations regarding spatial and spectral resolution depending on the spectral range to be captured. Image fusion techniques combine information from different sensors to obtain an HS cube with improved spatial and spectral resolution. This paper describes the contributions to HS image fusion using two push-broom HS cameras, covering the visual and near-infrared (VNIR) [400–1000 nm] and near-infrared (NIR) [900–1700 nm] spectral ranges, which are integrated into an intraoperative HS acquisition system developed to delineate brain tumor tissue during neurosurgical procedures. Both HS images were registered using intensity-based and feature-based techniques with different geometric transformations to perform the HS image fusion, obtaining an HS cube with wide spectral range [435–1638 nm]. Four HS datasets were captured to verify the image registration and the fusion process. Moreover, segmentation and classification methods were evaluated to compare the performance results between the use of the VNIR and NIR data, independently, with respect to the fused data. The results reveal that the proposed methodology for fusing VNIR–NIR data improves the classification results up to 21% of accuracy with respect to the use of each data modality independently, depending on the targeted classification problem.
URI: http://hdl.handle.net/10553/112258
ISSN: 2045-2322
DOI: 10.1038/s41598-021-99220-0
Fuente: Scientific Reports [EISSN 2045-2322], v. 11 (1), 19696, (Diciembre 2021)
Colección:Artículos
Adobe PDF (5,01 MB)
Vista completa

Citas SCOPUSTM   

26
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

19
actualizado el 15-dic-2024

Visitas

107
actualizado el 16-mar-2024

Descargas

27
actualizado el 16-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.