Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/112132
Título: Performance evaluation of classical classifiers and deep learning approaches for polymers classification based on hyperspectral images
Autores/as: Lorenzo-Navarro, Javier 
Serranti, Silvia
Bonifazi, Giuseppe
Capobianco, Giuseppe
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Deep Learning
Hyperspectral Images
Machine Learning
Polymer Classification
Fecha de publicación: 2021
Editor/a: Springer 
Proyectos: Evaluación del impacto de microplásticos y contaminantes emergentes en las costas de la Macaronesia 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 16th International Work-Conference on Artificial Neural Networks, IWANN 2021 
Resumen: Plastics are very valuable material for their desirable characteristics being one of them, their durability. But this characteristic turns plastics into an environmental problem when they end in the environment, and they become one source of contamination that can last for centuries. Thus, the first step for effective recycling is to identify correctly the types of plastics. In this paper, different classical classifiers as Random Forest, KNN, or SVM are compared with 1-D CNN and LSTM to classify plastics from hyperspectral images. Also, Partial Least Squares Discriminant Analysis has been included as the baseline because is one of the most widely used classifiers in the field of the Chemometrics community. The images were preprocessed with several techniques as Standard Normal Variate or Savitzky-Golay Polynomial Derivative to compare their effectiveness with raw data with the classifiers. The experiments were carried out using hyperspectral images with a 240 bands spectrum, and six types of polymers were considered (PE, PA, PP, PS, PVC, EPS). The best results were obtained with SVM+RBF and 1-D CNN with an accuracy of 99.41% and 99.31% respectively, preprocessing the images previously with Standard Normal Variate. Also, PCA and t-SNE methods were tested for dimensionality reduction, but they don’t improve the classifier performance.
URI: http://hdl.handle.net/10553/112132
ISBN: 978-3-030-85098-2
ISSN: 0302-9743
DOI: 10.1007/978-3-030-85099-9_23
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 12862 LNCS, p. 281-292, (Enero 2021)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

8
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

8
actualizado el 15-dic-2024

Visitas

87
actualizado el 17-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.