Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/112132
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Lorenzo-Navarro, Javier | en_US |
dc.contributor.author | Serranti, Silvia | en_US |
dc.contributor.author | Bonifazi, Giuseppe | en_US |
dc.contributor.author | Capobianco, Giuseppe | en_US |
dc.date.accessioned | 2021-10-05T15:04:54Z | - |
dc.date.available | 2021-10-05T15:04:54Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.isbn | 978-3-030-85098-2 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/112132 | - |
dc.description.abstract | Plastics are very valuable material for their desirable characteristics being one of them, their durability. But this characteristic turns plastics into an environmental problem when they end in the environment, and they become one source of contamination that can last for centuries. Thus, the first step for effective recycling is to identify correctly the types of plastics. In this paper, different classical classifiers as Random Forest, KNN, or SVM are compared with 1-D CNN and LSTM to classify plastics from hyperspectral images. Also, Partial Least Squares Discriminant Analysis has been included as the baseline because is one of the most widely used classifiers in the field of the Chemometrics community. The images were preprocessed with several techniques as Standard Normal Variate or Savitzky-Golay Polynomial Derivative to compare their effectiveness with raw data with the classifiers. The experiments were carried out using hyperspectral images with a 240 bands spectrum, and six types of polymers were considered (PE, PA, PP, PS, PVC, EPS). The best results were obtained with SVM+RBF and 1-D CNN with an accuracy of 99.41% and 99.31% respectively, preprocessing the images previously with Standard Normal Variate. Also, PCA and t-SNE methods were tested for dimensionality reduction, but they don’t improve the classifier performance. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation | Evaluación del impacto de microplásticos y contaminantes emergentes en las costas de la Macaronesia | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science | en_US |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 12862 LNCS, p. 281-292, (Enero 2021) | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Deep Learning | en_US |
dc.subject.other | Hyperspectral Images | en_US |
dc.subject.other | Machine Learning | en_US |
dc.subject.other | Polymer Classification | en_US |
dc.title | Performance evaluation of classical classifiers and deep learning approaches for polymers classification based on hyperspectral images | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 16th International Work-Conference on Artificial Neural Networks, IWANN 2021 | en_US |
dc.identifier.doi | 10.1007/978-3-030-85099-9_23 | en_US |
dc.identifier.scopus | 85115156321 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 15042453800 | - |
dc.contributor.authorscopusid | 6505996498 | - |
dc.contributor.authorscopusid | 7004379753 | - |
dc.contributor.authorscopusid | 55884978800 | - |
dc.identifier.eissn | 1611-3349 | - |
dc.description.lastpage | 292 | en_US |
dc.description.firstpage | 281 | en_US |
dc.relation.volume | 12862 LNCS | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.identifier.eisbn | 978-3-030-85099-9 | - |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2021 | en_US |
dc.identifier.conferenceid | events129887 | - |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.description.sjr | 0,407 | |
dc.description.sjrq | Q2 | |
dc.description.miaricds | 10,0 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.project.principalinvestigator | Gómez Cabrera, María Milagrosa | - |
crisitem.event.eventsstartdate | 16-06-2021 | - |
crisitem.event.eventsenddate | 18-06-2021 | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-2834-2067 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Lorenzo Navarro, José Javier | - |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.