Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/111924
DC FieldValueLanguage
dc.contributor.authorCarta González, José Antonioen_US
dc.contributor.authorCabrera Santana, Pedro Jesúsen_US
dc.date.accessioned2021-09-26T10:42:34Z-
dc.date.available2021-09-26T10:42:34Z-
dc.date.issued2021en_US
dc.identifier.issn0306-2619en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/111924-
dc.description.abstractA method, which involves genetic algorithms, is presented for the optimal sizing of a system comprising a medium-scale modular seawater reverse osmosis desalination plant powered exclusively by off-grid wind energy. The system uses a water storage reservoir that allows coverage of a particular hourly freshwater demand. The use of massive energy storage devices is discarded, although flywheels are used as a dynamic regulation subsystem as well as an uninterrupted power device to supply energy to the control subsystem. The method considers the interannual variation of wind energy, for which it uses machine learning techniques, and introduces randomness in the daily freshwater demand profile. The control strategy is based on ensuring that the energy consumption of the desalination modules remains in synchrony with wind generation throughout the system’s useful life, either operating under constant pressure and flow conditions or varying these parameters within an acceptable range. The proposed method is applied to a case study, aiming to cover a freshwater demand of 1825 × 103 m3/year, which is equivalent to the water production of a desalination plant with a 5000 m3/day capacity. As the proposed method evaluates the influence of diverse economic and technical parameters, it constitutes a useful tool in the design and implementation of such systems. The results obtained with the optimal system of the case study are compared with those obtained on the basis of a configuration that uses backup batteries to ensure continuous operation. It is shown that the variable operating strategy provides the optimal economic system.en_US
dc.languageengen_US
dc.relationInvestigación e innovación hacia la Excelencia en Eficiencia tecnológica, uso de Energías renovables, tecnologías Emergentes y Economía circular en la DESalaciónen_US
dc.relation.ispartofApplied Energyen_US
dc.sourceApplied Energy [ISSN 0306-2619], v. 304, 117888, (Diciembre 2021)en_US
dc.subject3308 Ingeniería y tecnología del medio ambienteen_US
dc.subject.otherWind energyen_US
dc.subject.otherWater-energy nexusen_US
dc.subject.otherDesalinationen_US
dc.subject.otherWater storage reservoiren_US
dc.subject.otherMeasure-correlate-predicten_US
dc.subject.otherSpecific costsen_US
dc.titleOptimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storageen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apenergy.2021.117888en_US
dc.identifier.isi000701915900002-
dc.identifier.eissn1872-9118-
dc.relation.volume304en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid46348282-
dc.contributor.daisngid46887105-
dc.description.numberofpages23en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Carta, JA-
dc.contributor.wosstandardWOS:Cabrera, P-
dc.date.coverdateDiciembre 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr3,062-
dc.description.jcr11,446-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds11,0
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorBlanco Marigorta, Ana María-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0003-1379-0075-
crisitem.author.orcid0000-0001-9707-6375-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameCarta González, José Antonio-
crisitem.author.fullNameCabrera Santana, Pedro Jesús-
Appears in Collections:Artículos
Adobe PDF (20,57 MB)
Show simple item record

WEB OF SCIENCETM
Citations

22
checked on Nov 17, 2024

Page view(s)

157
checked on Aug 31, 2024

Download(s)

184
checked on Aug 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.