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Optimal sizing of stand-alone wind-powered seawater reverse osmosis 
plants without use of massive energy storage 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A method for the optimal sizing of wind- 
powered desalination plants is 
proposed. 

• The method uses a water storage reser-
voir and discards use of bulk energy 
storage. 

• A machine learning technique is used to 
estimate the interannual wind energy. 

• The method uses genetic algorithms for 
the selection of the system components. 

• Modules operate under constant condi-
tions or varying their parameters in a 
range.  
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A B S T R A C T   

A method, which involves genetic algorithms, is presented for the optimal sizing of a system comprising a 
medium-scale modular seawater reverse osmosis desalination plant powered exclusively by off-grid wind energy. 
The system uses a water storage reservoir that allows coverage of a particular hourly freshwater demand. The use 
of massive energy storage devices is discarded, although flywheels are used as a dynamic regulation subsystem as 
well as an uninterrupted power device to supply energy to the control subsystem. The method considers the 
interannual variation of wind energy, for which it uses machine learning techniques, and introduces randomness 
in the daily freshwater demand profile. The control strategy is based on ensuring that the energy consumption of 
the desalination modules remains in synchrony with wind generation throughout the system’s useful life, either 
operating under constant pressure and flow conditions or varying these parameters within an acceptable range. 
The proposed method is applied to a case study, aiming to cover a freshwater demand of 1825 × 103 m3/year, 
which is equivalent to the water production of a desalination plant with a 5000 m3/day capacity. As the proposed 
method evaluates the influence of diverse economic and technical parameters, it constitutes a useful tool in the 
design and implementation of such systems. The results obtained with the optimal system of the case study are 
compared with those obtained on the basis of a configuration that uses backup batteries to ensure continuous 
operation. It is shown that the variable operating strategy provides the optimal economic system.   
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1. Introduction 

The growing demand in many parts of the planet for freshwater for 
human consumption and agricultural use has led to a substantial in-
crease over the last four decades in the number of desalination plants in 
use [1], particularly those that use reverse osmosis (RO) technology [2]. 
The energy sources used to date to power the various desalination 
technologies that have been developed have predominantly been fossil 
fuel based. On islands with freshwater scarcity problems and a strong 
external energy dependence, as in the Canary Islands [3], tackling the 
different aspects related to the water-energy nexus – which according to 
Dai et al. [4] has become an area of growing interest over the past decade 
for the scientific and political communities – acquires even greater 
relevance. This is especially true when, as underlined by Padrón et al. 
[5], the scarcity of freshwater in an area happens to coincide with a 
significant abundance of renewable energy sources. Roggenburg et al. 
[6] showed the feasibility of the use of RO desalination plants, sized to 
meet a public freshwater demand of approximately 3.79 Mm3/day for 
the American side of the US-Mexico border, through an offshore wind 
farm and an onshore photovoltaic (PV) farm, at a cost of between 2.00 
and 3.52 $/m3. The same authors also highlighted the significant re-
ductions in CO2 emissions that using such renewable energy sources 
entails. 

Wind is one of the most commonly used renewable energy sources 
[7], mainly due to the degree of maturity of the technologies associated 
with its exploitation [8]. Ghaffour et al. [7] argued that wind energy- 
based desalination could be one of the most promising options for 
seawater desalination, especially in coastal areas with high wind energy 
potential. González et al. [8] described the numerous and highly diverse 
operating systems and strategies that have been proposed for wind en-
ergy powered desalination plants and suggest what the future trends of 
these systems will be. The owners of the large- and medium-scale 
desalination plants that have been implemented to date have 
commonly opted for the installation of wind farms (WFs) and the 
connection of both subsystems to conventional power distribution grids 
[8]. However, as pointed out by Segurado et al. [9], the integration of 
wind energy powered desalination into the conventional grid of isolated 
islands may be limited even in the case of high wind energy potential. 

1.1. Literature review on microgrids for water desalination using 
renewable energies 

The wind energy powered desalination systems that have been 
developed to date to overcome the aforementioned drawback [9] and 
provide potable water for remote coastal areas where no conventional 
grid is available are, in effect, stand-alone microgrids. One of the 
problems in the use of wind power in desalination applications is the 
variable nature of wind. For this reason, most of the microgrids that have 
been built have required the incorporation of energy storage systems, 
mainly batteries [10], or have operated in conjunction with diesel 
generation systems [11]. 

Generally, the models proposed in the literature to size microgrids 
for water desalination using renewable energies have considered 
connection to the national grid [12] or the use of backup batteries, 
without [13] or with diesel generators [14], to ensure the continuous 
operation of the system. Kyriakarakos and Papadakis [15] investigated 
combinations of small-scale desalination systems using RO technology 
capable of producing up to a few thousand m3 of desalinated water per 
day in combination with photovoltaic and wind energy systems in sce-
narios of both grid connection and stand-alone mode. According to 
Kyriakarakos and Papadakis [15], the results obtained show that RO 
desalination, together with renewable energies, can profitably tackle 
current problems of water scarcity whilst at the same time minimizing 
the environmental footprint of the process. Very few of the models that 
have been proposed in the literature have focussed on the study of 
medium- or large-scale RO desalination plants [16]. To determine the 

optimum size of a hybrid renewable energy system, commercial soft-
ware applications like HOMER which apply a mono-objective optimi-
zation are commonly used [17]. Some studies have used particle swarm 
optimization [15], some have analysed the use of evolutionary algo-
rithms [18], and others have combined the use of HOMER and genetic 
algorithms [13]. These works fundamentally employ cost-based opti-
mization criteria, but none of them consider the replacement of energy 
backup systems with systems combining water storage with a new 
management strategy of the electricity demand of the RO desalination 
plant, as is proposed in the present study. Unlike the approach that is 
followed here, RO desalination units are normally considered working at 
their nominal operating point. However, Kyriakarakos et al. [19] re-
ported that a considerable increase in potable water production can be 
achieved with a variable operating load. According to Gude [20], 
bearing in mind the mismatch between supply source and demand and 
the intermittent nature of renewable energy resources, energy storage is 
an indispensable element for the continuous and reliable operation of 
desalination facilities. Aboelmaaref et al. [21] highlighted the urgent 
need for the implementation of renewable energies in desalination 
processes to reduce the negative effect of global warming. In their study, 
Moazeni et al. [22] optimized a micro water-energy system and 
concluded that the incorporation of batteries decreases the contribution 
of fossil fuel based energy in the water-energy nexus and reduces CO2 
emissions. However, according to McManus [23], batteries may be 
manufactured with materials that themselves have a high environmental 
cost and some of which, such as lithium, are resources in relatively short 
supply. They therefore stress that increasing dependency on battery- 
based energy storage systems can have a harmful impact. According to 
Soshinskaya et al. [24], a 100% renewable system would require an 
extremely large battery storage system which is presently economically 
unfeasible. In cases where the topographic characteristics are suitable, 
methodologies have also been proposed to optimize the size and oper-
ational strategy of wind-powered desalination and pumped hydro stor-
age systems [9]. 

González et al. [8], in their description of small-, medium- and large- 
scale off-grid wind energy systems for desalination, carried out an up-to- 
date worldwide review of projects which have been developed and put 
into operation at all scales and without the use of massive energy storage 
devices. Carta et al. [25] described a desalination system installed on the 
island of Gran Canaria (Spain) called the Seawater Desalination with an 
Autonomous Wind Energy System (SDAWES). The main aim of the 
SDAWES project, which was designed for fully autonomous operation 
and use in medium- and large-scale seawater desalination, was to 
determine the operational viability of using the energy generated by an 
off-grid WF to power three types of desalination technology without the 
use of massive energy storage devices. Subiela et al. [26] published the 
lessons that had been learnt after two years of tests performed with the 
RO, mechanical vapour compression and reverse electrodialysis tech-
nologies used within the framework of the SDAWES project. According 
to Subiela et al. [26], the most suitable process was RO, principally due 
to the rapid start-up. Among the problems detected with the change of 
phase technology (mechanical vapour compression) Subiela et al. [26] 
highlighted the slowness of the start-up and the generation of calcareous 
deposits (CaCO3) which took place after long periods of inactivity of the 
unit (more than 24 h). As a result of these deposits, laborious mainte-
nance work was required. Carta et al. [27] presented an operational 
analysis of the SDAWES system with the desalination plant comprising 
eight RO modules. The SDAWES project [27] takes advantage of the 
modular nature of RO plants, connecting and disconnecting modules 
which operate under constant pressure and flow conditions, with the 
aim of ensuring that the variation in energy demand for desalination is 
in synchrony with the wind generation. As reported by the authors [27], 
the WF was able to supply the energy needs of the RO modules 
throughout the entire desalination process (from seawater pumping to 
product water storage), as well as the energy needs of the control sub-
systems, without the use of massive energy storage devices. Carta et al. 
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[28] presented a seawater reverse osmosis (SWRO) prototype plant that 
was designed to continuously adapt its energy consumption to the var-
iable power supplied by a wind turbine (WT), while dispensing with the 
use of massive energy storage systems. In the prototype described by 
Carta et al. [28], the control system manages the number of pressure 
vessels that are connected/disconnected from the system and regulates 
their operating pressures and flows within predetermined acceptable 
limits in order to maintain a constant permeate recovery rate. 

In [27], the technical operational viability of the system developed in 
the SDAWES project is demonstrated. Nonetheless, this system, for 
various reasons which the authors indicate in the aforementioned paper, 
was not designed to optimally cover, from a technical and economic 
perspective, a particular hourly freshwater demand. 

The review of the literature that the authors of the present study have 
undertaken found that methods have been proposed that aim to analyse 
the performance of medium- and large-scale SWRO desalination plants 
that use wind-sourced electrical energy. They follow to a certain degree 
the operational concept of the SDAWES project. However, Cabrera et al. 
[29] did not contemplate the use of a water storage reservoir (WSR) to 
allow coverage of a given freshwater demand at all times of the year due 
to the variability of the wind resource. The simulation that was per-
formed by [30] also did not consider the use of a WSR and did not take 
into account the interannual variation of this resource, and no infor-
mation was provided about the cost of the product water. Loutatidou 
et al. [31] proposed the strategic storage of sufficient amounts of 
freshwater for use in the case of catastrophic events or for long-term 
supply. However, in their study [31], it is also supposed that conven-
tional grid electricity is available to allow continuous operation of the 
SWRO plant when the wind energy falls below a minimum established 
load. Calise et al. [32], as in [31], proposed the use of water storage 
systems to avoid the use of electric ones. However, their proposed 
microgrid, which is configured with PV panels, is connected to the main 
electrical grid. That is, the microgrid they considered will operate in on- 
grid mode, with the main objective of the system they proposed being to 
reduce electricity exchanges with the main grid using a hydrographic 
basin as an energy storage system. 

1.2. Aim, novelty and key contributions of this paper 

One of the reasons for initiating the research study presented here 
was the observation that a significant number of the methods proposed 
for the sizing of stand-alone microgrids for water desalination turn to the 
use of batteries to resolve the problem of variability that is inherent to 
renewable systems. The solution adopted in the scientific literature 
generally consists of maintaining constant operation of the desalination 
plants (at rated operating conditions) even though the energy supply 
varies with time. This approach results in designs that are heavily 
dependant on large battery systems to balance important mismatches 
between demand and generation. However, such designs have various 
drawbacks, as reported by McManus [23] and Soshinskaya et al. [24]. 
Another of the reasons for undertaking the research study presented 
here was that, although the technical operational viability of the design 
has previously and uniquely been demonstrated in [27], the design was 
not optimized, from a technical and economic perspective, as in this 
study. The authors therefore concluded that it would be opportune to 
propose an optimal design method for these systems, taking advantage 
of the practical experience they have acquired in their design, devel-
opment and testing. 

The main contribution of the method proposed in this research is that 
the optimization of stand-alone microgrids for water desalination is 
obtained avoiding the use of massive energy storage systems, like bat-
teries. This is due to the combination of water storage management and 
the proposal of a novel system control strategy to synchronize the energy 
consumption of the SWRO modules with wind renewable generation. 
The aim of this paper is therefore to present a method for the optimal 
economic sizing of a system comprising a medium-scale modular SWRO 

plant -powered exclusively by off-grid wind energy- and a WSR that 
allows coverage of a particular freshwater demand without the use of 
massive energy storage devices. However, also forming part of the sys-
tem are a flywheel energy subsystem (FES) and an uninterrupted power 
system (UPS). The purpose of the FES is, among others [27], to act as a 
voltage and frequency reference of the stand-alone electrical grid and to 
maintain dynamic stability in the face of disturbances. The purpose of 
the UPS is to supply energy to the control system (central and local of 
each subsystem) and to ensure the power required by various devices of 
the WT (yaw mechanism, blade-pitch control, etc.) is covered in periods 
when insufficient wind power is available or during the minutes prior to 
WT connection. 

The novelty of this paper lies in the fact that it is the first time that a 
method, which involves genetic algorithms, has been developed in 
which the system control strategy is to ensure that energy consumption 
of the SWRO modules is in synchrony with wind generation, whether 
working under constant pressure and flow conditions (as in the SDAWES 
system [27]) or when varying these operating parameters within an 
acceptable range such that the concentration of the product water is 
constant. In addition, the proposed method introduces randomness in 
the daily freshwater demand profile and considers the interannual 
variation of wind energy. For this latter purpose, the method uses 
measure-correlate-predict (MCP) models [33] based on machine 
learning techniques whose efficacy has been demonstrated in the esti-
mation of solar radiation time series [34] and, according to Karasu et al. 
[35] and Altan et al. [36], in the estimation of wind speed time series. 
This approach differs substantially from the standard approaches found 
in the literature, which use a time series that covers just a single year 
[30] and purely deterministic methods. 

The method selects the optimal number of WTs (considering 
different rated powers) and SWRO desalination modules (considering 
diverse nominal daily production capacities), the optimal WSR size, and 
the optimal volume of water that the WSR must contain before the 
system can be started up. The proposed method also allows determi-
nation of the capacities of the UPS and FES that are required for the 
proper functioning of the system. A discussion is offered of the results 
obtained from the application of this method to a case study with the 
objective of covering an annual freshwater demand of 1825 × 103 m3. 
The results obtained with the optimal system are then compared with 
those obtained with a reference system that uses backup batteries to 
ensure the continuous operation of the SWRO plant. 

2. Method 

In this section, a description is first provided of the general config-
uration of the system considered in the method presented in this paper 
and of the system used as reference system. Following this, the various 
tasks are developed that comprise the algorithm of the method for the 
optimal sizing and simulation of medium-scale wind powered modular 
SWRO plants.  

• Description of the general configuration of the system 

Fig. 1 provides a rough schematic outline of the general configura-
tion of the proposed system. On the left can be seen the electrical gen-
eration subsystem. 

The WF will comprise one or more WTs (represented in Fig. 1 by 
NWT). As mentioned in Section 1.2, an FES and UPS also form part of the 
electrical generation subsystem. 

The loads subsystem comprises an SWRO desalination plant made up 
of a number (represented in Fig. 1 by Nm) of single-stage SWRO module 
loads (with ‘positive feed-forward’ control [37]) fitted with energy re-
covery devices (ERDs). Each module will have a freshwater production 
capacity of Qm (m3 day− 1) when operating under constant feed pressure 
pf (Pa) and flow Qf (m3/h) conditions. Likewise, each module, operating 
with a recovery rate of Y (%) will have a mean production of Qp (m3/h) 
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with a product water concentration of Cp (mg/L) and a specific energy 
consumption of Ce (kWh per cubic metre of product water) in which the 
energy consumption of the feed and freshwater pumps is included. 

The freshwater pump subsystem includes a WSR, with a capacity of 
Vs (m3), which requires an initial water volume of Vo (m3) before the 
system is put into operation in order to avoid the seasonal variability of 
the wind impeding permanent coverage throughout the year of the 
hourly freshwater demand. 

The transformer represented in Fig. 1 has a 1:1 ratio and is connected 
in triangle/star form, as in the case of the SDAWES project [27]. This 
transformer is used for protection for homopolar faults on the secondary 
side (if one phase goes to earth the current passes through neutral and 
appropriate protections are activated so that the loads are out of service 
and the generation remains active). 

The basic protocol of the operation of the system considered in the 
method presented in this paper is described in Carta et al. [27]. In this 
reference, a description can be found of the electrical generation sub-
system, the load subsystem and the control subsystem of the SDAWES 
project. Likewise, the system operation is described, indicating the 
process for the creation of the isolated electrical grid, the load connec-
tion procedure and the strategies in the connection-disconnection order 
of the SWRO modules. The transformer is connected before start-up and 

before the excitation system of the synchronous machine is connected in 
order to isolate both circuits and avoid excess currents that could 
damage the equipment [27]. 

The systems that is used as a reference system, hereinafter referred to 
as RS, consists of a stand-alone microgrid that comprises a WF and a 
backup electrochemical energy storage system to ensure the continuous 
operation of an SWRO plant. The RS also has a WSR to ensure a balance 
at all times between the water produced by the SWRO plant working 
under constant operating conditions and the variable water demand. 
The elements of the electrical generation subsystem that pertain exclu-
sively to the RS are shown in Fig. 1 surrounded by a dashed line and with 
a circle with the letters ‘RS’.  

• Tasks covered by the algorithm of the method. 

Fig. 2 shows a block diagram of the set of tasks proposed to select the 
optimal system, from an economic perspective, which comprises a 
modular SWRO desalination plant powered by a stand-alone WF and a 
WSR that allows coverage of a particular hourly freshwater demand and 
without the use of massive energy storage systems. 

The first task in the proposed method is estimation of the long-term 
wind resource at the target site using an MCP method and the historical 

Fig. 1. Representative outline of the configuration of the system.  
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data series recorded at the reference weather stations (WSs). This task is 
developed in Section 2.1. 

After estimating the wind resource at the hub height of the WT at the 
target site corresponding to the years considered in the study, the second 
task of the process is carried out (Fig. 2). This task consists of the 
randomization of the profile of the daily freshwater demand that the 
system aims to cover and is developed in Section 2.2. 

The optimization process is undertaken in the third task (Fig. 2). 
Genetic algorithms (GA) were used to select the NWT for each WT type 
(WTT) that is considered and the Nm for each of the Qm mean daily 
freshwater production capacities that are considered. These algorithms 
were selected for different reasons, including: a) their demonstrated 
efficacy when the aim is to calculate non-differentiable functions, b) as 
they are intrinsically parallel, c) they are less affected by local maxima 

(false solutions) than traditional techniques, d) they do not require 
specific knowledge about the problem they are trying to resolve, e) they 
use probabilistic operators instead of the typical deterministic operators 
of other techniques, f) they are very easy to execute in modern massive 
architectures in parallel, g) unlike other more recent stochastic methods, 
like particle swarm optimization, the conceptual development of GAs 
has had, since its origins, mathematical backing that supports it, h) the 
result is highly independent of the initial conditions, i) due to our 
experience in the use of GAs in the resolution of entire optimization 
problems [38]. 

More specifically, the ‘ga’ function od Matlab’s Global Optimization 
Toolbox [39] was used. This function allows the resolution of entire 
optimization problems. 

The first stage of the optimization process consists of the generation 

Fig. 2. Block diagram of the tasks proposed for selection of the optimal economic scenario.  
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of an initial population. In this case, the population is comprised of a set 
of individuals, where each individual represents the set of ‘nvars’ vari-
ables that represent NWT, Nm, the SWRO module type (MT) and WTT, 
and constitutes a possible optimal configuration of the system. 

Once this population has been generated, the fitness of each indi-
vidual has to be evaluated. 

This fitness function recognises the technical and economic charac-
teristics assigned to the WTT and MT variables and is the objective 
function of the optimization problem in question. The target is to find 
the system configuration which meets the water demand and at the same 
time minimizes the product water cost. 

Firstly, the objective function analyses for each individual (potential 
configuration) of the population whether the cumulative annual flow 
that it can produce, Qpa, in each of the wind years considered is able to 
cover the annual water demand, 

∑8760
t=1 QDt . In the event that a given 

configuration does not meet this condition, it is discarded (the algorithm 
of the objective function penalizes this fact by assigning a high cost to 
the product water). 

For the configurations that satisfy the condition in all the analysed 
years that Qpa ≥

∑t=8760
t=1 QDt an estimation is then made of the reservoir 

volumes, Vs, that are required to cover the mean hourly water demand 
and of the water volumes, Vo, that the reservoir must contain before 
starting up the system defined by these configurations. 

The specific cost, Cs (€/m3), of the product water with each of the 
configurations that have not been discarded is then estimated. For this 
estimation, the investment and operating and maintenance costs of the 
subsystems which make up the configurations (WTs, SWRO desalination 
plant, WSR, UPS and FES) are taken into account, as are the estimated 
lifetime, L, and the discount rate, i. 

The ‘ga’ algorithm (Fig. 2) analyses the values Cs of each individual 
(system configuration) and finalizes its execution when the number of 
iterations has reached the value ‘MaxGenerations’ = 200 or if the mean 
relative change in the best fitness function value over ‘MaxStallGenera-
tions’ is less than or equal to a ‘FunctionTolerance’= 10− 4. For as long as 
the above indicated stop requirements are not met, the ‘ga’ algorithm 
generates a new population that is again evaluated. Subsequently, the 

genetic operators like the crossover -which combines part of the genetic 
information of its parents- and the mutation -which randomly alters the 
values of some genes in a parental chromosome- are stochastically 
applied. To obtain integer variables, ‘ga’ uses special creation, crossover, 
and mutation functions [40]. The fraction of the population at the next 
generation, not including elite children, that the crossover function 
creates was set at ‘CrossoverFraction’= 0.8. The number of individuals of 
a generation that are guaranteed to survive in the following generation 
was set at ‘EliteCount’= 0.05⋅’PopulationSize’. The algorithms for this 
task are developed in Section 2.3. 

In the fourth task, a comparison of the specific cost obtained with the 
optimal analysed system configuration is compared with the specific 
cost of the RS. This fourth task is developed in Section 2.4. 

In the fifth and final task, a simulation is performed of the configu-
ration that provided the lowest specific cost. In this simulation, a 
sensitivity analysis is carried out, the frequency of start-ups/shut-downs 
of the SWRO modules is considered, and the behaviour of different 
variables is analysed, including the hourly WSR volume, the mean 
hourly wind energy powers that are not exploited, etc. 

2.1. Task-1. Estimation of long-term wind speed at the target site 

The procedure normally employed by MCP methods that use multi-
ple reference WSs comprises two stages [33] (Fig. 3). 

As reported in [33], in the first stage (indicated by an encircled 
number “1” in Fig. 3), it is hoped to establish a relationship between the 
wind data series recorded at the reference sites and the target site for the 
short-term period that is common to both. For this, the dataset is divided 
into two subsets. One of the two data subsets, which is given the name 
training data, is used in the learning algorithm of the MCP model. The 
other subset, given the name test data, is used to evaluate the MCP model 
that is constructed. In this work, this partition between the training and 
test data was carried out using the statistical technique known as 10-fold 
cross-validation [33]. 

Fig. 3 shows, by way of example, the use of three reference WSs (WS- 
1, WS-2 and WS-3). However, the number of reference WSs can be 

Fig. 3. Block diagram of the procedure normally employed by MCP methods [33].  
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higher or lower. 
In the second stage (indicated by an encircled number “2” in Fig. 3), 

the long-term wind data series available for the reference WSs are fed 
into the MCP model selected in stage 1 as input feature. The aim is to 
undertake an estimation of the historical (or long-term) wind conditions 
at the target site. 

The model M− 1 for wind speed estimation uses a multiple regression 
approach, which is represented in Eq. (1). In the M− 1 model proposed in 
this study, the wind direction signal is introduced using its sine and 
cosine, and the angle corresponding to the northerly direction is taken as 
angle 0◦.   

In the functional form of the model, X = (X1,⋯,Xd)
T are the input 

features, the subscript t indicates the instant evaluated, and Yt =

WS − 4(S)t represents the estimated output feature or response. 
Diverse machine learning techniques have been proposed in the 

literature to resolve regression function in MCP models. These include 
artificial neural networks [41], support vector machine [42] and 
random forest (RF) [43]. In this work, the regression function given in 
Eq. (1) is estimated using an RF algorithm [44], which has provided 
adequate results in previous studies conducted by Díaz et al. [42] and 
Cabrera et al. [45], and is robust against overfitting [46]. For pro-
gramming of the RF-based MCP model, the randomForest package [47] 
of the open-source multi-platform R Statistics software [48] was used. A 
wrapper technique was used to select the input features of the model 
analysed, as is usually done with time series prediction models in which 
diverse input features intervene [49]. The recursive feature elimination 
(RFE) [50] algorithm, available in the Caret package [51] of the R 
Statistics software, was used. For more detailed information, please 
consult the Supplementary Material (S.1: Task-1). 

The metrics used to analyse the M− 1 model were the mean absolute 
error (MAE), the index of agreement (IoA) [52], the adjusted coefficient 
of determination (R2

a) and the mean squared error (MSE). For more 
detailed information, please consult the Supplementary Material (S.2: 
Task-1. The metrics used to analyse the M− 1 model). 

2.2. Task-2. Randomization, in each month, of the daily freshwater 
demand profile 

This task is based on the assumption of the availability of long-term 
data of the hourly freshwater demand that it is estimated will be 
consumed over a year long period. 

With this data it is possible to determine seasonal water demand and 
the mean daily profiles of water demand (red line in Fig. 4) for each of 
the 12 months of the year. 

Given that the optimization method proposed in this work selects the 
number and capacity of the SWRO modules taking into consideration the 
differences that can occur in each hour in available wind power and in 
water demand, it was considered opportune to consider the randomness 
of the daily freshwater demand profile in addition to the randomness of 
the wind resource (Task-1). 

For this, the time series of hourly data recorded in each of the twelve 
months of the year is modified with a purpose-built algorithm. Modifi-
cation of the water demand data series is made for each day of each 
month and is undertaken in such a way that the mean daily water de-
mand profile of the corresponding month (red line in Fig. 4 which is 

shown as an example) is not altered. To achieve this objective, each of 
the 24-hourly water demand data of a given day and month is randomly 
(and without replacement) selected from all the data recorded of the 
hour under consideration during all the days of the month. That is, in the 
case of Fig. 4, the water demand data corresponding, for example, to 
14:00 of each day of the month that Fig. 4 represents come from the 
random (and without replacement) selection of the data highlighted in 
the figure by a dashed line box. 

2.3. Task-3. System optimization 

In this task, the system optimization process represented in Task-3 of 

Fig. 2 is carried out. The most representative aspects of the process are 
differentiated in the subsections below: 

2.3.1. Estimation of the initial configurations of the system 
In this section, an estimation is carried out of the NWT and Nm for 

each of the Qm mean daily freshwater production capacities and WTT 
that are considered, and which would be required to cover the peak 
water demand based on the wind data from the year with the least wind 
power. 

These parameters are used to define the initial configurations of the 
system. 

The Nm for each Qm is determined, Eq. (2), from the value of the 
peak mean hourly flow (max(QDt) ) which it is estimated will be 
demanded. 

Nm = ceiling
(

max(QDt)

Qm/24

)

(2)  

where ceiling(∙) function returns the smallest integers larger than the 
parameter. 

The power that is required to cover the peak demand with the Nm 
SWRO modules of Qm capacity is determined through Eq. (3): 

Pm = Nm⋅Ce⋅
(

Qm
24

)

(3) 

Fig. 4. Example of a mean daily profile of hourly water demand in a particular 
month. The coloured circles represent the hourly demand data recorded on 
each day of the month. 

Yt = f (Xt) = WS − 4(S)t

= f [WS − 1(S)t,WS − 2(S)t,WS − 3(S)t, cos(WS − 1(D)t), sin(WS − 1(D)t), cos(WS − 2(D)t), sin(WS − 2(D)t), cos(WS − 3(D)t), sin(WS − 3(D)t)] (1)   
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The NWT for each WTT which is required to cover Pm is determined 
through Eq. (4): 

NWT = ceiling

⎛

⎝ Pm
WTPOmin

⎞

⎠ (4) 

In Eq. (4), WTPOmin is the smallest mean annual power output that 
would be obtained with the selected WTT in all the years considered. In 
this paper, the power curve of the selected WT is used to estimate its 
power output as a function of the estimated wind speeds (ws) at its hub 
height. To estimate the mean hourly WT power output Eq. (5) is used 
[53]: 

WTPOt =
1
2
⋅cp⋅A⋅ρ⋅(wst)

3 (5)  

where: cp is the electrical power coefficient of the WT and is a function of 
the wind speed ws; A is the rotor swept area of the WT; and ρ is the air 

density at the site where the WT is to be installed. 

2.3.2. Generation of the s potential initial system configurations, omitting 
WSR size 

First, a matrix M, of s rows × 4 columns, is generated from the pa-
rameters estimated in Section 2.3.1, in which each of its rows, without 
the as yet undefined Vs, represents a potential system configuration. This 
matrix M will constitute the ‘InitialPopulationMatrix’, where the number 
of rows s will coincide with ‘PopulationSize’. 

For more detailed information, please consult the Supplementary 
Material (S.3: Task-3). 

2.3.3. Estimation of the cumulative flow that a configuration s of the wind 
energy powered desalination system is able to produce 

Subroutine-1 (Fig. 5) determines the cumulative flow, Qpa, that a 
given configuration is able to produce annually. 

Fig. 5. Subroutine-1. Estimation of the cumulative flow, Qpa, that a given configuration, s, is able to produce annually in the case of the SWRO modules operating 
under variable pressure and flow conditions. 
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• Operating strategies of the SWRO modules considered: 

Subroutine-1, thus far developed, admits two operating modes of the 
SWRO modules for energy consumption to be in synchrony with wind 
generation: a) variable pressure and flow conditions (S-2), such that the 
concentration of the water product remains constant; and b) constant 
pressure and flow conditions (S-1), which constitutes a particular case of 
mode a). 

Pohl et al. [54] proposed and theoretically analysed diverse opera-
tional strategies for the variable operation of SWRO modules, one of 
which was used by Carta et al. [28] in an experimental analysis of a 
small-scale prototype SWRO desalination plant designed for continuous 
adjustment of its energy consumption to the widely varying power 
generated by a stand-alone wind turbine. In the method proposed in the 
present study, any of the variable operating strategies proposed by Pohl 
et al. [54] can be implemented. However, to date the authors of the 
present study have only programmed the algorithm which contemplates 
the strategy of variable pressure and feed flow rate within an acceptable 
range such that the concentration of the product water remains constant. 

In the case of strategy S-2, an analysis is performed in Subroutine-1 at 
each instant t (one hour) of the series of annual data (8760 data in this 
work) of the number of SWRO modules, Nmt− 1, at the instant t-1, in 
order to decide whether the connection of new modules, the discon-
nection of one or more modules in operation at t-1, or modification of 
the operating parameters (within an acceptable range) of the modules in 
operation at t-1, is required in order to adapt consumption to the wind 
energy available at the instant t and thereby decrease the start-up shut- 
down frequency [46]. The number of modules, Nmt , which need to be 
connected at an instant t operating under nominal conditions is deter-
mined (Fig. 2) by applying the ‘trunc(x)’ function to the quotient pro-
duced by dividing the power, WFPOt, generated by the WF at that instant 
t (after covering the loads of the FES and UPS and their energy losses) by 
the power demand of an SWRO module. trunc(x) takes a single numeric 
argument x and returns an integer formed by truncating the value in x 
toward 0. The WFPOt, is determined according to the NWT (number of 
WTs) that make up the WF, the power output of a WT (WTPOt) with the 
wind blowing at the instant t, and the estimated efficiency of the WF, ζ, 
which depends, among other factors, on wake effect losses [53]. 

The UPS has, in each instant t, to cover the power of the central 
control unit (Pcontrol) and of the of the WTs and the SWRO modules (τ =
0), Eq. (6). If there is insufficient wind energy available to cover the 
power (Pswt) demanded by the WTs (yaw mechanism, blade-pitch con-
trol, etc.) [55], this power must be covered by the UPS (τ = 1). 

PBatt = (NWT + Nm + 1)⋅Pcontrol + τ⋅NWT⋅Pswt (6) 

The power PFES, Eq. (7), which the FES must supply will be a per-
centage ϕ of the power that the Nm modules require at the instant Δt of 
connection/disconnection. The inertia J of the FES is estimated through 
Eq. (8) [56]: 

PFES = ϕ⋅Pm⋅Nm→EFES = PFES⋅Δt (7)  

EFES =
1
2

⋅J⋅(ω2
max − ω2

min)→J =
2⋅EFES

(ω2
max − ω2

min)
(8) 

The power consumed by the FES when increasing the turning speed 
from ω to wmax is estimated through Eq. (9), which was obtained when 
resolving the differential equation shown in Eq. (10): 

P =
ν⋅
(
ω2

max⋅e2⋅ν⋅3600
J − ω2

)

e2⋅ν⋅3600
J − 1

(9)  

J⋅
dω
dt

⋅ω+ ν⋅ω2 = P (10) 

The viscous friction coefficient, ν, was estimated through Eq. (11), 
based on the experience of the authors [27]: 

ν =
0.1⋅PFES⋅1000

ω2
max

(11) 

For each type of SWRO module, estimation is made of the flow, Qp 
(m3/h), that is produced (with a user-defined concentration), the re-
covery rate and the operating pressure, pf (Pa), as a function of the 
power consumed, Pc (kW), within the acceptable operating range of 
[Pmin,Pmax]. 

Fig. 6. Representation, by way of example, of the operating variables obtained 
with a membrane software for a generic SWRO module, within an acceptable 
operating range, and of the curves fitted to them. 

Fig. 7. Subroutine-2. Estimation of the reservoir volume, Vs, and water volume, 
Vo, required before starting up the system. 
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These estimations can be obtained with software provided by the 
membrane manufacturers. In the proposed method they were obtained 
with the Toray membrane software [57]. 

Curves are fitted to representative points of the different operating 
variables obtained for each SWRO module plotted against Pc, Eq. (12). 
Fig. 6 shows, for a generic model and by way of example, a represen-
tation of these operating points obtained with the membrane software 
used and of the curves fitted to them. 

Qp
(
m3/h

)

Y(%)

pf (Pa)

⎫
⎬

⎭
= function(Pc)with Pc in kW (12)  

2.3.4. Estimation of WSR capacity and initial reservoir volume required to 
cover water demand 

Subroutine-2 (Fig. 7) determines the volumes, Vs and Vo, required to 
cover freshwater demand. A procedure similar to that employed in 
Subroutine-1 is used to estimate the flows, Qpt , produced at each instant 
t. 

Depending on the wind power evolution of each year and on that 
year’s water demand, it may occur that the cumulative flow, Qpa, 
required to cover the annual demand, 

∑8760
t=1 QDt , is reached one or more 

months before the end of the year, and the system will cease being 
operational. However, to cover the freshwater demand for the remaining 
month/s of the year a significantly large-sized WSR may be required 
(Fig. 8). In order to reduce the volume, Vs, of the WSR, and therefore the 
investment costs required for its construction, optimization of the size of 
the WSR is undertaken in Subroutine-3 (Fig. 9) for each configuration s. 

To minimize the size of the reservoir in Subroutine-3, the system is 
forced to be operational throughout the year (Fig. 8). Prior to executing 
Subroutine-3, the maximum volume of water, MVs

0 = max(Vs
o,i) with i =

1,…, ny, which the reservoir must contain before starting up the system, 
is determined for each configuration s. Likewise, the reservoir volume, 
Vs

S,i = Vs
S,i + MVs

0 − Vs
o,i, required in each of the i years considered, is 

determined for each configuration s. 
As can be observed in Fig. 9, for the configuration s, the algorithm 

starts with the reservoir volume, Vs, defined in Subroutine-2, and re-
duces it by an amount that is equal to the hourly production of an SWRO 
module whilst meeting the requirement that there is sufficient wind 
energy potential to power at least one SWRO module, whether or not it is 
operational, and the requirement that the water volume in the reservoir 
at the end of the year is equal (with a tolerance T) to Vo. 

2.3.5. Calculation of the specific cost of the water produced with each 
configuration s of the system 

After the different configurations s of the system which meet the 

requirement of covering annual freshwater demand have been fully 
defined, and after the sizes of the WSR have been optimized, Subroutine- 
4 undertakes the analysis of the specific cost per m3 of product water in 
each of the configurations. To select the optimal configuration from an 
economic perspective, use is proposed in this study of the so-called 
simplified cost of water (SCOW) method [58], Eq. (13), which has 
been extensively used in the literature. 

SCOW =
TPV⋅CRF + Annual O&M costs

∑8760
t=1 QDt

, in €/m3 (13) 

In Eq. (13), TPV is the total present value of the actual cost of all the 
subsystems of a given configuration s. That is, TPV, Eq. (14), takes into 
account the costs associated with the investments that need to be made 
in the electrical energy generation subsystem (CWF), the dynamic 
regulation subsystem (CFES), the energy storage subsystem (CI&R

Batt), the 
water desalination subsystem (CSWRO) and the water storage reservoir Fig. 8. Optimization of water storage reservoir.  

Fig. 9. Subroutine-3. Estimation of the minimum volume of the reservoir, Vs, 
for each year and configuration s. 

J.A. Carta and P. Cabrera                                                                                                                                                                                                                    



Applied Energy 304 (2021) 117888

11

subsystem (CWSR). Annual O&M costs correspond to the costs associated 
with the operation and maintenance of the system, Eq. (15). 

TPV = CSWRO +CWSR +CWF +ψ⋅CFES +CI&R
Batt (14)  

Annual O&M costs = CO&M
SWRO +CO&M

WSR +CO&M
WF +ψ⋅CO&M

FES +CO&M
Batt (15) 

In the cases in which massive energy storage is discarded, CI&R
Batt rep-

resents the initial investment costs, CBatt , and the replacement costs, CR
Bat , 

Eq. (16), of the UPS. In the RS case, these costs refer to the battery-based 
massive energy storage subsystem. ψ = 1 if massive energy storage de-
vices are not used, otherwise ψ = 0. 

CI&R
Batt = CBatt +CR

Batt = CBatt +CBatt⋅
[

1
(1 + i)y1 +

1
(1 + i)y2 ...

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
CR

Batt

(16) 

In Eq. (16), CR
Bat depends, as indicated by van den Boomen et al. [59] 

and Díaz-González et al. [60], on the periods, y1, y2, …, in which the 
battery replacements are performed and on the discount rate, i, that is 
used, which represents to a certain degree the opportunity cost of the 
resources employed. 

The CRF, Eq. (17), is the capital recovery factor, which is dependent 
on the useful life, L, of the system and the discount rate, i. 

CRF =
i⋅(1 + i)L

(1 + i)L
− 1

(17)  

2.4. Task-4. Modelling of the reference system. Comparison with the 
reference case 

In the case of the RS, it is firstly necessary to establish the capacity, 
Nm× Qm, of the SWRO plant that can cover the annual water demand, 
∑8760

t=1 QDt . Likewise, it is necessary to determine the volume of the WSR 
that balances the mismatches between the product flow, Qpt, of the 
SWRO plant and the water demand, QDt, at each instant t. This volume is 
estimated in a similar way to that indicated in Subroutine-2 (Fig. 7). The 
WF must have an NWT that allows the generation of the power required 
by the SWRO to meet the annual water demand, 

∑8760
t=1 QDt . The batteries 

must be able to store the energy that is necessary to balance the mis-
matches between the power output of the WF, WFPOt and the pow-
er, Pc = Nm× Pm, consumed by the SWRO plant at each instant t. For 
each instant t, the battery charging and discharging processes are un-
dertaken using the mathematical models indicated in Eqs. (18) and (19), 
respectively: 

EBatt,t = EBatt,t− 1⋅(1 − σt)+ (WFPOt − Pc)⋅
̅̅̅̅̅̅̅̅̅
RTE

√
;WFPOt > Pc (18)  

EBatt,t = EBatt,t− 1⋅(1 − σt) − (Pc − WFPOt)/
̅̅̅̅̅̅̅̅̅
RTE

√
;WFPOt < Pc (19)  

where RTE is the round-trip DC-to-storage-to-DC energy efficiency of the 
batteries and the electronic power converters and σt is the set discharge 
rate in the time t [12]. In this model, it was considered that there exists 
an annual RTE degradation percentage, RTEDA. The charging and dis-
charging of the batteries are undertaken in such a way that in the control 
of their state of charge (SOC) at an instant t, defined through Eq. (20), 
the maximum depth of discharge (DOD) is limited [12]. 

(100 − DOD)⩽SOCt =
EBatt,t

NBC
⋅100⩽100 (20)  

where NBC is the nominal battery capacity. 

2.5. Task-5. Simulation of the optimal system 

In this task, the simulation was undertaken of the system that was 
determined to be optimal in Task-3. Knowing the optimal configuration 
(NWT, Nm, Vs), and using a loop that covers all the hours of the years 

analysed, the wind power available in the WF in each hour is deter-
mined, along with the number of SWRO modules in operation, the flow 
produced, the values of the operating parameters of each SWRO module 
(power consumed, operating pressure and recovery rate), the available 
power of the WF not used by the desalination system, and the available 
volume of water in the WSR. For more detailed information, please 
consult the Supplementary Material (S.4: Task-5). 

3. Case study 

In this section, the location of the system is described and the wind 
and freshwater demand data are presented. Information is also given 
about the costs of the WSRs, as well as technical and economic data 
about the WTs, batteries, FES and the SWRO modules. 

3.1. Location of the system in the case study 

The case study of the proposed method was undertaken on the island 
of Gran Canaria (Canary Islands-Spain). Fig. 10 shows the location of 
WS-4 where the wind data of the installation site proposed for the sys-
tem were recorded. The locations of WS-1, WS-2 and WS-3 are also 
shown, where the historical long-term mean hourly wind data series 
were registered and which will be considered the reference stations 
when MCP methods based on RF [44] are used to estimate the wind 
speeds at the target site, WS-4, for which only short-term wind data 
series are available. 

3.2. Description of the meteorological data used 

For the purpose of this study, we used the mean hourly wind speed 
and directions recorded at a height of 10 m above ground level (a.g.l.) 
during the period 2001–2019 at the reference stations (WS-1, WS-2 and 
WS-3) installed at the airports of three of the islands in the Canary Ar-
chipelago (Fig. 10), and the available mean annual wind speeds (2010 
and 2014) recorded at WS-4 (Fig. 10) at a height of 60 m a.g.l. 

Fig. 11 shows the interannual variations of the mean wind speeds at 
the various WSs. 

Fig. 12 shows a boxplot of the mean monthly wind speeds recorded at 
the three reference WSs, revealing the seasonal variability of the wind 
and its greater intensity during the summer months due to the influence 
of the trade winds. 

For more detailed information, please consult the Supplementary 
Material (S.5: Meteorological data used). 

3.3. Description of the freshwater demand data used 

Fig. 13 shows a boxplot of the mean hourly profile of the variation in 
freshwater demand used for the purposes of the case study. 

The annual flow is 1,825,000 m3/year, which is equivalent to the 
water production of a desalination plant with a 5000 m3/day capacity 
operating continuously 365 days of the year. Fig. 14 shows the monthly 
freshwater demand which the proposed wind energy powered desali-
nation system aims to cover. For more detailed information, please 
consult the Supplementary Material (S.6: Freshwater demand data 
used). 

3.4. Description of wind turbine technical and economic data 

For this study, we opted to use E-44 and E-70 WTs manufactured by 
Enercon GmbH. For this reason, the bounds of the variable WTT are 
{1,2}. The WTs have respective rated powers of Pr = 900 kW and Pr =

2300 kW [61] and are widely used in WFs in the Canary Islands. In this 
case study, a hub height of 60 m was considered. 

In order to estimate the investment costs of the WFs, an analysis was 
undertaken of the costs of 10 WFs made up of E-44 WTs and 11 WFs 
made up of E-70 WTs, recently installed in the Canary Islands (Table 1). 
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In this work, the total investment costs (€) in the WF are given by Eqs. 
(21) and (22) for the case of the E-44 and the E-70, respectively. 

CWF(NWT) = (1.1481⋅NWT − 0.5308)⋅106 (21)  

CWF(NWT) = (2.19⋅NWT − 0.05)⋅106 (22) 

For more detailed information, please consult the Supplementary 
Material (S.7: Wind turbine - technical and economic data). 

The annual operating and maintenance cost, CO&M
WF , of the generation 

system was taken as η = 3.3% of the investment cost [83], Eq. (23): 

CO&M
WF = η⋅CWF (23)  

3.5. Description of SWRO module technical and economic data 

The capacities of the modules considered in this work (Table 2) and 
their nominal operating characteristics were obtained using the Toray 
software [57]. The bounds of the variable MT are {1,9}. For more 
detailed information, please consult the Supplementary Material (S.8: 
SWRO module technical data). 

The maximum and minimum operating powers of each SWRO 
module are given in Table 2. 

The specific costs, cSWRO(Qm), in €/m3, associated to the different 

desalination capacities are given through Eq. (24) [29]. 

cSWRO(Qm) = 4151.8⋅Qm− 0.125 (24) 

Estimation of the total investment cost of a given configuration, s, of 
an SWRO plant comprising Nm(s modules was made through Eq. (25) 
[29]: 

CSWRO = α⋅cSWRO(Qm)⋅Nm(s⋅Qm+(1 − α)⋅cSWRO(Qm⋅Nm(s)⋅Nm(s⋅Qm (25) 

In Eq. (25), α = 0.75 [29] reflects the percentage of specific invest-
ment costs attributable to the cost of mechanical equipment, mem-
branes, electrical and instrumentation systems and ERDs. The remaining 
(1-α) of the investment costs includes intake construction costs, intake 
pump stations, building costs, brine and product flow discharge and 
indirect capital costs [84]. 

The annual operating and maintenance costs are expressed in this 
work by Eq. (26). The value of 0.106 €/m3 for product water is the sum 
of the cost attributable to the use of chemicals (0.044 €/m3 [85]) and the 
cost (0.062 €/m3 [85]) attributable to membrane and cartridge filter 
replacement. The second term of Eq. (26) represents the fixed operating 
and maintenance costs and was estimated as a percentage (β = 4% [85]) 
of the investment costs. 

Fig. 10. Location of the case study.  

Fig. 11. Mean annual wind speeds recorded during the 2001–2019 period at the reference stations (WS-1, WS-2 and WS-3) and the available mean annual wind 
speeds (2010 and 2014) recorded at the target site (WS-4) at respective heights of 10 m and 60 m a.g.l. 
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CO&M
SWRO = 0.106*

∑8760

t=1
Qpt + β⋅CSWRO (26)  

3.6. Description of WSR costs 

Eq. (27) shows the specific investment cost, cWSR(Vs), in concrete, 
covered-type WSRs according to their capacity. This cost was calculated 
on the basis of data obtained for different WSRs constructed in Spain 

with volumes ranging from 1000 m3 [86] to 60000 m3 [87]. 

CO&M
WSR = CWSR⋅γ (27) 

For more detailed information, please consult the Supplementary 
Material (S.9: Specific costs of the water storage). 

A logarithmic curve, Eq. (28), was fitted to this data with a coeffi-
cient of determination of R2 = 0.8646. The specific cost above 70000 m3 

was assumed to remain constant. 

Fig. 12. Boxplot of the mean monthly wind speeds recorded at the reference stations WS-1, WS-2 and WS-3 during the 19 years considered (2001–2019).  

Fig. 13. Daily flow profile, constructed using one year of mean hourly flow data.  
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cWSR(Vs) = − 30.55⋅ln(Vs)+ 441.73 (28) 

That is, the investment cost in the water storage system will be given 
by Eq. (29): 

CWSR = cWSR(Vs)⋅Vs (29) 

The annual operating and maintenance costs are usually estimated as 
a percentage of the investment cost, and, in this work, this was taken as 
γ = 0.015 [88], Eq. (27). 

3.7. Description of battery subsystem technical and economic data 

The investment cost of the Li-ion battery subsystem is given by Eq. 
(30) and the specific cost, cBatt, was obtained from [89]. cBatt = 297 
€/kWh includes the cost of the power conversion subsystem (PCS), the 
balance of plant (BOP) and construction and commissioning (C&C). 
Replacement cost was estimated through Eq. (16) and considering a 
useful life of 10 years. cO&M

Batt , Eq. (31), was estimated considering a fixed 
cost of 6.6 €/kW and a variable cost of 0.025 €/kWh [89]. An RTE = 86% 
was considered and a charging efficiency equal to that of discharging. 
The following were also considered: σt = 0.02% [90], RTEDA = 0.5%, 
DOD = 80%, Pcontrol = 0.3 kW and Pswt = 20 kW [91]. 

CBatt = cBatt⋅EBatt (30)  

CO&M
Batt = 6.6⋅PBatt + 0.00025⋅EBatt (31)  

3.8. Description of FES technical and economic data 

The costs associated to the FES were obtained from [89]. The specific 
cost considered, which includes the PCS, BOP and C&C costs, was cFES =

2361 €/kW, Eq. (32). cO&M
FESS was estimated considering a fixed cost of 4.6 

€/kW and a variable cost of 0.025 €/kWh [89]. The following were also 
considered: wmin = 5760 rpm,wmax = 6240 rpm, ϕ = 50%, and a useful 

life greater than 25 years. 

CFES = cFES⋅PFES (32)  

CO&M
FES = 4.6⋅PFES + 0.00025⋅EFES  

4. Results and discussion 

The results obtained in the different tasks indicated in Fig. 2 are 
presented and analysed in this section. 

4.1. Task-1. Analysis of the results obtained in the estimation of long-term 
wind speed 

From the analyses undertaken in Task-1 (Fig. 2) with M− 1 (Eq. (1)) 
of the estimation of long-term wind speed at the target site, it is deduced 
that none of the input features initially considered were discarded by the 
wrapper method. The RFE algorithm [51] indicates that the best subset 
size was estimated to be 9 predictors, namely the 9 input variables 
initially considered, Eq. (1). That is, all the variables used as M− 1 model 
inputs (wind speeds and directions of the three reference WSs) 
contributed in reducing the forecasting error of the variable wind speed 
at the target site, which is the output variable of the model. This result is 
in agreement with the results obtained in previously published works 
[92] in which the improvement in wind speed forecasting was demon-
strated when using various reference WSs as opposed to using MCP 
models based on the use of just a single reference WS. 

It is therefore recommended, when estimating the long-term wind 
speed at a site under consideration for the installation of systems ana-
lysed in the present study, to use MCP models that can incorporate 
regional information of the wind resource and that use a wrapper 
method. 

The R2
a mean value of 81.33% (with a standard deviation of 1.07%) 

and the IoA mean value of 0.8151 (with a standard deviation of 0.001) 
reflect a relatively good goodness-of-fit of the M− 1 model to the variable 
wind speed at 60 m a.g.l. at the target site. The MAE value of 1.521 ms− 1 

(with a standard deviation of 0.047 ms− 1) indicates the mean absolute 
error of the target variable that it is estimated will be produced if the 
hypothesis of climate stability on which the MCP methods are based is 
met [33]. It should be noted that, probably, if the variables recorded at 
10 m a.g.l. at the reference WSs had been used to estimate the wind 
speeds at 10 m a.g.l at the target WS, the forecasting errors would have 
been lower. However, in this situation, to evaluate the wind speeds at 60 
m a.g.l. based on the estimated wind speeds at 10 m a.g.l. at the target 
WS, a vertical wind profile model would be required in which terrain 
roughness length would have to be considered [53] as a function of wind 
direction, as well as atmospheric stability (neutral, unstable, stable) 
[53]. For this, it would be necessary to estimate not only the long-term 
wind speeds but also the long-term wind directions. This, coupled with 
the uncertainty that the vertical wind profile model generates, can lead 
to errors higher than those obtained with the procedure used in the 
present paper. 

Fig. 14. Monthly average freshwater demand.  

Table 1 
Number of WTs in WFs and references.  

E-44 1 [62] 1 [63] 1 [64] 21 [65] 2 [66] 2 [67] 10 [68] 7 [69] 9 [70] 2 [71]  
E-70 1 [72] 1 [73] 1 [74] 3 [75] 4 [76] 4 [77] 6 [78] 7 [79] 8 [80] 3 [81] 4 [82]  

Table 2 
Ranges of power consumption, Pc, of the SWRO modules considered.  

MT 1 2 3 4 5 6 7 8 9 

Qm (m3/day) 1000 1500 2000 2500 3000 3500 4000 4500 5000 
Pmin (kW) 87.11 130.67 174.22 217.78 261.33 202.01 348.47 392.03 435.58 
Pmax (kW) 144.24 216.35 286.16 360.56 432.67 377.44 576.88 649.02 721.12  
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Fig. 15 shows the interannual variations in mean estimated wind 
speeds at 60 m a.g.l. with M− 1, and Fig. 16 a boxplot of the mean 
monthly estimated wind speeds at 60 m a.g.l. in WS-4. 

It can be seen that the mean annual wind speeds can differ by more 
than 1 m/s and that, although a certain trend is maintained in seasonal 
wind behaviour, the interannual variation of the mean wind speed in a 
given month can present significant differences and atypical values 
(outliers). The above analysis justifies the need to consider the inter-
annual and seasonal evolution of wind speed when evaluating the pro-
posed desalination system, as opposed to the use of deterministic models 
or models which use only one series of annual wind speed data as has 
been the case to date in the scientific literature [30]. 

For more detailed information, please consult the Supplementary 

Material (S.10: Results obtained in the estimation of long-term wind 
speed). 

4.2. Task-2. Analysis of the influence on the results of the randomization 
of the daily profile of freshwater demand 

As indicated in Section 2.2, in the proposed method the randomness 
of the daily water demand profile was considered. Evidently, the 
randomness of this demand together with the randomness of the mean 
hourly wind speeds have a considerable influence on the output vari-
ables of the simulation model used, including the operating frequencies 
of the SWRO modules, the water volumes in the WSR, the percentages of 
unused available wind energy, etc. However, in this work, the contri-
bution of the inherent uncertainty due to the random nature of each of 
these two input variables of the estimation model to the uncertainty of 
the response of the model was not quantified. This corresponds to a 
knowledge gap that we propose to resolve in future works using a global 
sensitivity analysis model. In this context, use is proposed of the method 
employed by Carta et al. [93] for WF power output estimation models, 
which can be applied both if there is dependency between the input 
variables and if they are independent. 

4.3. Analysis of the results obtained in the system optimization 

In this work, L was estimated at 20 years and i at 5% of investments at 
constant prices, Eq. (17). Table 3 shows the configurations that were 
optimal for each WTT and SWRO plant operating strategy. 

It can be deduced that, for a given operating strategy, the WFs 
comprised of WTs with higher rated power (WTT = 2) give a lower 
specific product water cost. This justifies our proposal for the use, 
whenever possible, of higher rated power WTs for these applications. 
That is, economy of scale has an influence on the product water cost. 
This question was also highlighted in a study by Kyriakarakos and 
Papadakis [15] on small-scale desalination coupled with renewable 
energy. In fact, there has been a rising trend, fundamentally in Europe, 
of the rated power of WTs installed over recent years [94]. In Europe, in 
2019 and according to the data available for 14 countries, the average 
power rating of new onshore WTs was 3.1 MW [95]. Nonetheless, in 
places like the Canary Islands, where the case study was developed, 
WTT = 1 continue to be installed (Table 1). 

It can be observed that the S-2 strategy provided, in all the analysed 
configurations in the case study, lower specific costs than the S-1 
strategy. The S-2 strategy allows the SWRO modules to take more effi-
cient advantage of the wind energy, enabling a reduction in their 
number while maintaining or even reducing the number of WTs 
(Table 3). 

It can be seen that, although the capacities of the SWRO modules 
considered are in the range of 1000–5000 m3/day (Table 2), the algo-
rithm of the optimization preferentially selected the capacities of the 
smaller modules (1000 and 1500 m3/day). This is a consequence of the 
fact that these capacities, despite requiring a higher Nm than with the 
higher capacity modules, are more suitable in terms of adapting the 
consumption of the SWRO plant to the hourly wind energy variation and 
generating a lower specific product water cost. The lowest specific cost 
(2.08 €/m3) was obtained with the configuration of WTT = 2, Nm = 8, 
NWT = 5 and Qm = 1000 m3/day. The variability of the wind and the 
absence of massive energy storage systems require the optimal system 
obtained to have a desalination plant with a global capacity of 8000 m3/ 
day, which is considerably higher than the 5000 m3/day which would be 
required to cover the annual freshwater demand if the plant were to 
operate conventionally, as is the case of the RS. However, it is deduced 
from the results obtained with the S-1 and S-2 operating strategies (using 
modules of 1000 m3/day) that, despite requiring respective installed 
capacities of 9000 m3/day and 8000 m3/day, these strategies result in 
lower product water costs than the RS systems (Table 3). 

This specific cost is within the 0.56€/m3-3.15€/m3 range generated, 

Fig. 15. Mean measured and estimated annual wind speeds at 60 m a.g.l. with 
M− 1 during the 2011–2019 period at the target station WS-4. 

Fig. 16. Boxplot of the mean monthly estimated wind speeds at 60 m a.g.l. at 
WS-4 with M− 1 for the study period (2001–2019). 

J.A. Carta and P. Cabrera                                                                                                                                                                                                                    



Applied Energy 304 (2021) 117888

16

according to Karagiannis and Soldatos [96], by SWRO plants with ca-
pacities of between 1000 m3/day and 5000 m3/day. It can also be 
observed that the specific costs of all the configurations that discard the 
use of massive energy storage were lower than those generated with the 
RS, with the latter being higher than the results obtained by Roggenburg 
et al. [6]. 

This costs comparison, it should be noted, is solely for illustrative 
purposes as the wind regime data used in the calculation has a consid-
erable influence on these costs. When performing a more precise com-
parison, these data need to be homogenised. Given the aim of the present 
study, the costs comparisons undertaken were based on an identical 
wind regime, which can be classified as high (mean interannual wind 
speed above 9.7 m/s at 60 m a.g.l., Fig. 15). Given that product water 
costs with lower intensity winds will be higher, use of the method 
described in this work is proposed to carry out this estimation. 

It should be noted that the specific cost obtained with the RSs 
(Table 3) did not contemplate, as did the systems which used the S-1 and 
S-2 strategies, a volume of the WSR as a safety reserve (Δ = 14974 m3, 
corresponding, in the case study, to two days of maximum hourly de-
mand, Fig. 13). If this safety reserve is also considered, the specific costs 
of RS (WTT = 2) and RS (WTT = 1) would rise to 3.60 €/m3 and 4.53 
€/m3, respectively. 

Fig. 17 shows the percentages of the investment costs associated to 
the components of the configurations described in Table 3. It can be 
observed that, independently of the WTT, use of the S-2 instead of the S- 
1 strategy entailed a reduction in the investment percentages of the 
SWRO plant and the WF, but an increase in the investment percentage of 

the WSR. In the case of the RS, independently of the WTT, the highest 
investment percentage is associated to the massive energy storage sys-
tem. In this case, the investment percentages in the SWRO plant and in 
the WSR are considerably lower than those that appear in the configu-
rations that discard the use of massive energy storage. Therefore, given 
the large size of the battery systems and the costs currently associated to 
such systems, it makes sense to use higher desalination capacities than 
those used with the RS (which operate without interruption), despite 

Table 3 
Optimal configurations.  

Strategy WTT NWT Nm Qm 
m3/day 

Volume 
Htm3 

UPS/Bat 
MWh 

FES 
kW 

Investment 
M€ 

Cost 
€/m3 

S-1 1 9 7 1500  0.1046  6.4 678  42.00  2.61 
S-2 1 8 6 1500  0.1163  5.7 775  39.21  2.42 
S-1 2 5 9 1000  0.0745  1.0 581  35.42  2.25 
S-2 2 5 8 1000  0.0659  1.0 323  32.57  2.08 
RS 1 18 1 5000  0.0187  102.4 –  78.13  4.45 
RS 2 7 1 5000  0.0187  76.5 –  61.09  3.52  

Fig. 17. Specific costs of the product water according to each of the different configurations and operating strategies (S-1 and S-2) of the SWRO modules analysed.  

Fig. 18. Specific cost generated by the reference system according to the ca-
pacity of the energy storage system and number of wind turbines. 
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their lower degree of use. A similar conclusion was drawn in [15] in the 
case of small-scale desalination. In addition, the operating strategies S-1 
and S-2, as they discard the use of massive energy storage devices, 
reduce the high environmental cost that, according to McManus [23], 
such devices can produce. 

In the case of the RS, once the mean daily capacity of the SWRO plant 
is established (5000 m3/day), the specific product water cost depends 
fundamentally on the capacities of the WF and the battery systems 
(Fig. 18). If the aim, in addition to minimizing the specific product water 
cost, were to also include minimization of battery capacity, it would be 
necessary to make a decision about the configuration of the system on 
the basis of the information that the Pareto-optimal front provides 
(Fig. 18). 

The systems which discard the use of massive energy storage in 
batteries do so by turning to the use, in addition to a non-conventional 
strategy, of a WSR. In the case study, the optimal economic system gave 
a lower WSR size than that obtained with the majority of the tested 
configurations (Fig. 19). 

In the case of the existence of constraints as the result, for example, of 
limitations to subsystem size, limitations to land availability, environ-
mental guidelines, regional policies, etc., other optimal options of the 
Pareto set or Pareto front could be analysed (Fig. 19). With respect to 
these limitations, it should be noted that the impacts generated by the 
construction of WSRs are related to the surrounding area (visual, flora, 
fauna, etc.) and can be avoided or corrected. Any project that engineers 
wish to carry out requires an obligatory environmental impact study 
which is imposed by the relevant authorities, and such a study must 
include any corresponding corrective measures if they are required. 

Fig. 20 shows the results of the analysis of the sensitivity of the 
specific product water cost of the optimal S-2 configuration to changes 
in various economic parameters. 

It can be seen the investment costs in the SWRO plant, the WF and 
the WSR have a considerable influence on the specific product water 
cost. 

If the WSR investment costs could be reduced by 42% [97], using an 
open reservoir instead of a covered reservoir made from concrete, the 
specific product water cost would fall by 6% with this optimal S-2 
configuration (Fig. 20), obtaining a specific cost of 1.96 €/m3. However, 
in such a circumstance a specific cost of 1.93 €/m3 could be attained 
with a different configuration (NWT = 4, Nm = 8, Qm = 1000 m3/day, 
UPS = 805 kWh, FES = 258 kW) that requires a larger WSR (95,007 m3) 
which is shown encircled in Fig. 21. In this respect, we would like to 

point out that in the Canary Islands some of the dams are being rede-
signed and new water storage reservoirs are being built for use in 
pumped hydro systems. These new reservoirs do not have to be made of 
concrete and store water which has been previously desalinated by 
SWRO plants. We would like to mention that some recently constructed 
reservoirs, including those that we have designed for use in the hydro- 
wind plant on the island of El Hierro [98], comprise areas dug out of 
the ground, compacted and then covered with plastic material. 

If a WSR were already available and the only associated costs were 
for operating and maintenance, the specific product water cost would 
fall by 14.24%. In this situation, the optimal configuration used in the 
sensitivity analysis moves to eleventh position (with a specific cost of 
1.79 €/m3), behind other configurations highlighted in Fig. 21. The 
lowest specific cost (1.67 €/m3) was obtained with the abovementioned 
configuration (indicated in the yellow shaded area of Fig. 21). In this 
context, it should be noted that the storage of desalinated water in 
aquifers has been proposed as a possible cost-effective solution for the 
Gulf Council Cooperation countries [31]. 

The purpose of the sensitivity or post-optimal analyses was to try to 
identify the impact on the initial results of certain changes to the vari-
ables without having to repeatedly run the algorithm again. Nonethe-
less, our intention in future works (although at a high computational 
cost) is to consider and analyse the use of a more appropriate procedure 
to ensure the robustness of the solution when dealing with variations in 
the data. This procedure involves including in the optimization method 
the existing uncertainty in the values of the economic parameters, using 
for this purpose stochastic optimization or robust optimization [99]. In 
stochastic optimization [100], the pdfs of the data must be known or 
estimated. In robust optimization [101], which is more conservative 
than stochastic optimization, it is considered that uncertain data are 
included in a so-called uncertainty set which is defined by the user [99]. 

4.4. Analysis of the results obtained in the simulation of the optimal 
system 

Fig. 22 shows the mean monthly capacity factors (CFs) of the WF for 
the optimal configuration of the S-2 strategy, as well as the monthly 
percentages of water produced by the optimal configuration with 
respect to demand and the mean monthly percentages of WSR occupa-
tion. It can be seen that the CFs of the WFs follow, in the case study, the 
tendency shown by the wind speed at WS-4 (Fig. 19). In the months of 
July and August, the wind speed at the target site causes the WF to 

Fig. 19. Specific product water cost according to each of the different configurations and operating strategies (S-1 and S-2) of the SWRO modules analysed.  

J.A. Carta and P. Cabrera                                                                                                                                                                                                                    



Applied Energy 304 (2021) 117888

18

operate most of the time at its rated power. 
Likewise, it can be seen in Fig. 22 that during June, July and August 

(months with greater influence of the trade winds blowing from the 
north-east) the WSR is frequently full. Consequently, use of the SWRO 
modules has to be restricted, despite the availability of wind energy to 
produce a higher flow of water, due to the WSR size limitation imposed 
in the system optimization task (Fig. 2) in order to minimize the in-
vestment cost and, therefore, the specific product water cost. 

It can be seen from the simulation that was performed of the optimal 
system configuration that the volume of water in the WSR that is not 
used to cover demand is considerably high (Fig. 23) if compared with 
that required by the RS (Table 3). It can also be seen that only in 2010 
was the water stored in the WSR reduced to the volume established as 
the safety reserve (Δ = 14974 m3) (Fig. 13). However, in most of the 
hours (99.05%) of the 19 years considered, the water volume in the WSR 
was higher than 38995 m3. That is, the probability of having a safety 
reserve greater than 5.2 days, in the worst-case scenario of a 24-hour a 
day maximum demand of 311.95 m3/h (Fig. 13), is high. This supply 
guarantee, unlike the RS considered (see Supplementary Material S.11: 
Simulation of RS), covers contingencies in both the electrical generation 
system and the water production system, conferring on the supply sys-
tem a certain capacity of resilience. 

Fig. 23 shows the hourly evolution of the volume of water in the WSR 
over the course of 19 years (2001–2019). It can be seen that, as a 

consequence of the interannual variability of the wind regime at the site, 
the volume of water stored each year can differ significantly. This has an 
important influence on the size of the WSR that is required to ensure 
coverage of the hourly water demand with a low degree of uncertainty. 
In addition, it corroborates the previously mentioned need to discard the 
possibility of using just one year’s worth of data, despite this being the 
usual practice in the consulted literature, and take into consideration the 
interannual variation of wind regimes when estimating the product 
water costs. In this way, the uncertainty and risks for investors will be 
reduced. 

By way of example, Fig. 23 also shows a simulation of the perfor-
mance of the UPS and the FES over the course of 2010. It can be seen that 
the minimum SOC of the UPS was 20%. The mean flywheel operating 
speeds are also shown for the same year. 

The reliability of the water supply in the face of the randomness of 
the wind and the water demand and in the face of operational contin-
gencies of the WF or SWRO subsystems could be increased by estab-
lishing in the optimization method a value of Δ in line with the time 
period considered convenient. This would evidently entail an increase in 
the specific product water cost. 

It is deduced from the analysis of the data obtained from the simu-
lation of the optimal system configuration that the time during which 
the SWRO plant was inactive (0 SWRO modules in operation) was lower 
than the time during which the 8 SWRO modules that make up the plant 

Fig. 20. Analysis of the sensitivity of the specific product water cost of the optimal S-2 configuration to changes in diverse economic parameters.  

Fig. 21. Specific product water cost in the case of the need to construct a WSR and in the case of an already available WSR with only operating and maintenance costs 
to pay. 
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were operating simultaneously in parallel (frequency = 15%) (Fig. 24). 
During 50% of the time, the number of SWRO modules that were 
operating in parallel was lower or equal to 5 (median of the boxplot of 
Fig. 24), with the first quartile being 3 SWRO modules and the third 
quartile 6. That is, during 25% of the time the number of SWRO modules 
working simultaneously in parallel was less than or equal to 3, and 
during 75% of the time the number of SWRO modules working simul-
taneously in parallel was less than or equal to 6. 

For more detailed information about the operating ranges of the 
variables in the optimal configuration of the S-2 strategy, please consult 

the Supplementary Material (S.12: Frequencies with which an SWRO 
module operated for the optimal configuration of strategy S-2). 

With the aim of comparing the behaviour of the optimal configura-
tion of strategy S-2 with that of the configurations obtained with strat-
egy S-1, simulations of two configurations were carried out: the optimal 
S-2 configuration and the S-1 configuration which uses the same SWRO 
module capacity (Qm = 1000 m3/day), the same type of WT (WTT = 2), 
the same number of WTs (NWT = 5) and the same number of SWRO 
modules (Nm = 8) as the optimal S-2 configuration. 

It can be seen (Fig. 25) that the annual number of start-ups/shut- 

Fig. 22. Mean monthly capacity factors of the WF for the optimal configuration of the S-2 strategy, mean monthly percentages of freshwater produced by this 
configuration with respect to demand, and mean monthly percentages of WSR occupation. 

Fig. 23. Hourly volume of water in the WSR for the optimal configuration of the S-2 strategy for each of the 19 years (2001–2019) considered in the study.  
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downs of the modules of the optimal S-2 configuration is lower than that 
obtained with the S-1 configuration. Given that a quasi-dynamic model 
was used with time steps of 1 h, the aim with Fig. 25 is not to provide an 
absolute value of start-ups/shut-downs. The aim is to establish a com-
parison between the two configurations given that both operate under 
the same wind speed and water demand conditions. That is, the variable 
operating strategy allows a reduction in the number of start-ups/shut- 

downs of the SWRO modules. Likewise, it can be seen that the optimal 
S-1 configuration is the one with the highest number of start-ups/shut- 
downs of the two configurations compared. This is due to the fact that 
the capacity of these modules operating under constant pressure and 
flow conditions does not facilitate their adaptation to the variability of 
the wind energy. In this paper, the so-called ring strategy [27] is applied 
and as a result, as can be seen in Fig. 25, the disconnection of SWRO 
modules is undertaken in such a way that the number of start-ups and 
shut-downs of all the SWRO modules is made approximately uniform. 

It should be noted that the S-2 strategy requires a control subsystem 
that regulates a higher number of parameters than the S-1 strategy. In 
this context, the implementation of artificial intelligence techniques in 
wind energy-powered desalination has been proposed [102]. Some re-
sults of tests performed in this regard have been published in the sci-
entific literature [38]. 

With respect to the annual percentages of unexploited wind power, it 
can be seen in Fig. 26 that the RS configuration is the configuration that 
best exploits the wind energy that the WF of the system can generate. It 
can be seen in Fig. 26 that in the S-1 and S-2 optimal configurations the 
percentage of available but unused wind energy is appreciable. 

The load factor of the optimal system, defined as the ratio of the 
average load divided by the peak load in a specified time period (one 
year in this case), was calculated as 645.85 kW/1153.9 kW = 0.56. The 
load factor is an indicator of how efficiently energy is being utilized. 
Given that the load factor is not low, it is seen that energy use is rela-
tively constant. 

This energy could be used to optimize system operation by exploiting 
the unused energy in other applications. In principle, the discarded 
energy could be used to heat the feedwater of the SWRO modules in 
order to increase the product water flow. As pointed out by Voutchkov 
[83], the use of warmer water reduces saline water viscosity, which in 
turn increases membrane permeability. As a rule of thumb, the permeate 
flux increases by 3% for every 1 ◦C of temperature increase. Although 

Fig. 24. Frequency (%) of the number of SWRO modules operating simulta-
neously in parallel in the study period considered. 

Fig. 25. Comparison of the annual number of start-ups/shut-downs of the 
SWRO modules generated in the optimal S-2 configuration and the S-1 
configuration with the same NWT and Nm as the optimal S-2 configuration. 

Fig. 26. Monthly percentages of available WF power not used by the SWRO 
plant. These percentages were analysed for the optimal S-2 configuration, the 
optimal S-1 configuration, and the RS configuration. 
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increasing the temperature brings with it an increase in osmotic pressure 
and can produce an increased passage of salts (lowering the quality of 
the permeate water) due to the effect of hot water on membrane 
structure, seawater heated within an acceptable temperature range 
lowers its viscosity, increasing membrane permeability and thus giving 
rise to an increase in product water [83]. According to Greenlee et al. 
[103], for source water temperatures up to 30 ◦C, using warmer water 
allows reduction of the feed pressure and energy used for desalination. 

There also exists the possibility of storing this unused wind energy in 
the form of H2 for its use in services unrelated to the system. So-called 
green H2, as an energy vector, can be produced through a chemical 
process known as electrolysis with the use of electrolysers. This method 
uses an electrical current to separate the H2 from the O2 in water (H2O). 
If this electricity is obtained from renewable sources energy will there-
fore be produced without emitting carbon dioxide into the atmosphere. 
Likewise, renewable H2 can be used to generate electricity through the 
use of hydrogen fuel cells and cover periods of insufficient wind speed. 
However, there are some doubts about the feasibility of green hydrogen 
due to its high production cost. According to a report by the Interna-
tional Renewable Energy Agency (IRENA) published in December 2020 
[104], strategies to reduce electrolyser costs include continuous inno-
vation, performance improvements and upscaling. 

A third alternative to optimize the exploitation of the available wind 
energy is related to so-called smart demand management [105]. Man-
agement strategies can be aimed at adapting, as far as is possible, the 
profile of water consumption to that of wind energy availability. 

With the goal of fighting climate change, strategies are being pro-
posed to achieve substantial reductions in the emission of pollutants into 
the atmosphere [106]. One of the sectors that can facilitate the transi-
tion towards a low carbon emission economy is the energy generation 
sector. This will entail, amongst other measures, the replacement of 
fossil fuels with non-polluting renewable energy sources. In this context, 
the potential contribution of the system proposed in the present study to 
this transition makes it even more attractive. 

5. Conclusions 

In this work, a method has been proposed to optimize the design of a 
system comprising a medium-scale modular seawater reverse osmosis 
plant -powered exclusively by off-grid wind energy- and a water storage 
reservoir that allow coverage of a particular freshwater demand without 
the use of massive energy storage devices. The application of the method 
to a cases study on the island of Gran Canaria (Spain) has also been 
analysed. 

The proposed method considers the interannual variation of wind 
energy and for this purpose uses measure-correlate-predict models 
based on machine learning techniques and introduces randomness in the 
daily freshwater demand profile. 

Of the different results obtained from this study, the following can be 
highlighted:  

• Consideration of the random nature of wind energy and the daily 
freshwater demand profile gives the method a degree of robustness 
in its finding viable configurations.  

• It is deduced that, for a given operating strategy, wind farms 
comprising wind turbines with a higher rated power result in a lower 
specific product water cost.  

• A better performance was also observed of the configurations of the 
modular desalination plants operating under variable conditions 
compared to their operation under constant conditions. This 
improvement was detected in the specific product water cost, in the 
relative frequency of start-ups/shut-downs, and in the better 
exploitation of the available wind energy.  

• The specific costs of all the configurations that discard the use of 
massive energy storage were lower than those generated with the 
reference system that does use massive energy storage.  

• The proposed system, unlike the reference system that does use 
massive energy storage, covers contingencies in both the electrical 
generation system and the water production system, conferring on 
the supply system a certain capacity of resilience.  

• The contribution that the proposed system can make to the transition 
towards a low carbon emission economy makes it even more 
attractive. 

In summary and in conclusion, the proposed method, which is based 
on desalination systems powered by wind energy and whose technical 
operating viability has been previously experimentally demonstrated, 
constitutes a useful tool for guidance in the design and implementation 
of such systems. 
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Too ICS. Modelling autonomous hybrid photovoltaic-wind energy systems under 
a new reliability approach. Energy Convers Manage 2018;172:356–69. 

J.A. Carta and P. Cabrera                                                                                                                                                                                                                    

https://doi.org/10.1016/j.apenergy.2021.117888
https://doi.org/10.1016/j.apenergy.2021.117888
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0005
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0005
https://doi.org/10.1016/j.enconman.2020.113105
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0015
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0015
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0020
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0020
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0020
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0025
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0025
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0025
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0030
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0030
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0030
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0035
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0035
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0035
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0040
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0040
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0040
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0045
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0045
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0045
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0055
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0055
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0055
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0060
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0060
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0060
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0065
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0065
http://refhub.elsevier.com/S0306-2619(21)01204-6/h0065


Applied Energy 304 (2021) 117888

22

[14] Ibrahim MM, Mostafa NH, Osman AH, Hesham A. Performance analysis of a 
stand-alone hybrid energy system for desalination unit in Egypt. Energy Convers 
Manage 2020;215:112941. 

[15] Kyriakarakos G, Papadakis G. Is small scale desalination coupled with renewable 
energy a cost-effective solution? Applied Sciences. 2021;11(12):5419. https:// 
doi.org/10.3390/app11125419. 

[16] Elmaadawy K, Kotb KM, Elkadeem MR, Sharshir SW, Dán A, Moawad A, et al. 
Optimal sizing and techno-enviro-economic feasibility assessment of large-scale 
reverse osmosis desalination powered with hybrid renewable energy sources. 
Energy Convers Manage 2020;224:113377. 

[17] Gökçek M. Integration of hybrid power (wind-photovoltaic-diesel-battery) and 
seawater reverse osmosis systems for small-scale desalination applications. 
Desalination 2018;435:210–20. 

[18] Peng W, Maleki A, Rosend MA, Azarikhah P. Optimization of a hybrid system for 
solar-wind-based water desalination by reverse osmosis: Comparison of 
approaches. Desalination 2018;442:16–31. 

[19] Kyriakarakos G, Dounis AI, Arvanitis KG, Papadakis G. Design of a Fuzzy 
Cognitive Maps variable-load energy management system for autonomous PV- 
reverse osmosis desalination systems: A simulation survey. Appl Energy 2017; 
187:575–84. 

[20] Gude VG. Energy storage for desalination processes powered by renewable energy 
and waste heat sources. Appl Energy 2015;137:877–98. 

[21] Moustafa M. Aboelmaaref, Mohamed E. Zayed, Jun Zhao, Wenjia Li, Ahmed A. 
Askalany, M. Salem Ahmed, et al. Hybrid solar desalination systems driven by 
parabolic trough and parabolic dish CSP technologies: Technology categorization, 
thermodynamic performance and economical assessment. Energy Convers 
Manage 2020;220:113103. http://dx.doi.10.1016/j.enconman.2020.113103. 

[22] Moazeni F, Khazaei J, Pera-Mendes JP. Maximizing energy efficiency of islanded 
micro water-energy nexus using co-optimization of water demand and energy 
consumption. Appl Energy 2020;266:114863. 

[23] McManus MC. Environmental consequences of the use of batteries in low carbon 
systems: The impact of battery production. Appl Energy 2012;93:288–95. 

[24] Soshinskaya M, Crijns-Graus WHJ, van der Meer J, Guerrero JM. Application of a 
microgrid with renewables for a water treatment plant. Appl Energy 2014;134: 
20–34. 
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[38] Cabrera P, Carta JA, González J, Melián G. Artificial neural networks applied to 
manage the variable operation of a simple seawater reverse osmosis plant. 
Desalination 2017;416:140–56. 

[39] Global Optimization Toolbox User’s Guide, The MathWorks, Inc., 2016. Url: http 
://in.mathworks.com/help/pdf_doc/gads/gads_tb.pdf. 

[40] Deep Kusum, Singh Krishna Pratap, Kansal ML, Mohan C. A real coded genetic 
algorithm for solving integer and mixed integer optimization problems. Appl 
Math Comput 2009;212(2):505–18. 

[41] Carta JA, Cabrera P, Matías JM, Castellano F. Comparison of feature selection 
methods using ANNs in MCP-wind speed methods. A case study. Appl Energy 
2015;158:490–507. 

[42] Díaz S, Carta JA, Matías JM. Comparison of several measure-correlate-predict 
models using support vector regression techniques to estimate wind power 
densities. A case study. Energy Convers Manage 2017;140:334–54. 

[43] Díaz S, Carta JA, Matías JM. Performance assessment of five MCP models 
proposed for the estimation of long-term wind turbine power outputs at a target 
site using three machine learning techniques. Appl Energy 2018;209:455–77. 

[44] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. Data 
Mining, Inference and Prediction. 2nd ed. Springer: Stanford; 2013. 
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