Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/107483
Título: Human or machine? It is not what you write, but how you write it
Autores/as: Leiva, Luis A.
Díaz Cabrera, Moisés 
Ferrer Ballester, Miguel Ángel 
Plamondon, Rejean
Clasificación UNESCO: 2405 Biometría
Palabras clave: Biometrics
Classification
Deep Learning
Handwriting
Kinematic Models, et al.
Fecha de publicación: 2021
Editor/a: Institute of Electrical and Electronics Engineers (IEEE) 
Proyectos: Generacion de Un Marco Unificado Para El Desarrollo de Patrones Biometricos de Comportamiento 
Publicación seriada: Proceedings - International Conference on Pattern Recognition 
Conferencia: 25th International Conference on Pattern Recognition (ICPR 2020) 
Resumen: Online fraud often involves identity theft. Since most security measures are weak or can be spoofed, we investigate a more nuanced and less explored avenue: behavioral biometrics via handwriting movements. This kind of data can be used to verify whether a user is operating a device or a computer application, so it is important to distinguish between human and machine-generated movements reliably. For this purpose, we study handwritten symbols (isolated characters, digits, gestures, and signatures) produced by humans and machines, and compare and contrast several deep learning models. We find that if symbols are presented as static images, they can fool state-of-the-art classifiers (near 75% accuracy in the best case) but can be distinguished with remarkable accuracy if they are presented as temporal sequences (95% accuracy in the average case). We conclude that an accurate detection of fake movements has more to do with how users write, rather than what they write. Our work has implications for computerized systems that need to authenticate or verify legitimate human users, and provides an additional layer of security to keep attackers at bay.
URI: http://hdl.handle.net/10553/107483
ISBN: 978-1-7281-8808-9
ISSN: 1051-4651
DOI: 10.1109/ICPR48806.2021.9411949
Fuente: Proceedings - International Conference on Pattern Recognition [ISSN 1051-4651], p. 2612-2619, (Mayo 2021)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.