Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/handle/10553/107483
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Leiva, Luis A. | - |
dc.contributor.author | Díaz Cabrera, Moisés | - |
dc.contributor.author | Ferrer Ballester, Miguel Ángel | - |
dc.contributor.author | Plamondon, Rejean | - |
dc.date.accessioned | 2021-06-11T09:19:47Z | - |
dc.date.available | 2021-06-11T09:19:47Z | - |
dc.date.issued | 2021 | - |
dc.identifier.isbn | 978-1-7281-8808-9 | - |
dc.identifier.issn | 1051-4651 | - |
dc.identifier.other | Scopus | - |
dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/107483 | - |
dc.description.abstract | Online fraud often involves identity theft. Since most security measures are weak or can be spoofed, we investigate a more nuanced and less explored avenue: behavioral biometrics via handwriting movements. This kind of data can be used to verify whether a user is operating a device or a computer application, so it is important to distinguish between human and machine-generated movements reliably. For this purpose, we study handwritten symbols (isolated characters, digits, gestures, and signatures) produced by humans and machines, and compare and contrast several deep learning models. We find that if symbols are presented as static images, they can fool state-of-the-art classifiers (near 75% accuracy in the best case) but can be distinguished with remarkable accuracy if they are presented as temporal sequences (95% accuracy in the average case). We conclude that an accurate detection of fake movements has more to do with how users write, rather than what they write. Our work has implications for computerized systems that need to authenticate or verify legitimate human users, and provides an additional layer of security to keep attackers at bay. | - |
dc.language | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | - |
dc.relation | Generacion de Un Marco Unificado Para El Desarrollo de Patrones Biometricos de Comportamiento | - |
dc.relation.ispartof | Proceedings - International Conference on Pattern Recognition | - |
dc.source | Proceedings - International Conference on Pattern Recognition [ISSN 1051-4651], p. 2612-2619, (Mayo 2021) | - |
dc.subject | 2405 Biometría | - |
dc.subject.other | Biometrics | - |
dc.subject.other | Classification | - |
dc.subject.other | Deep Learning | - |
dc.subject.other | Handwriting | - |
dc.subject.other | Kinematic Models | - |
dc.subject.other | Liveness Detection | - |
dc.subject.other | Verification | - |
dc.title | Human or machine? It is not what you write, but how you write it | - |
dc.type | info:eu-repo/semantics/conferenceobject | - |
dc.relation.conference | 25th International Conference on Pattern Recognition (ICPR 2020) | - |
dc.identifier.doi | 10.1109/ICPR48806.2021.9411949 | - |
dc.identifier.scopus | 85110557799 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 34880363200 | - |
dc.contributor.authorscopusid | 57224983122 | - |
dc.contributor.authorscopusid | 55636321172 | - |
dc.contributor.authorscopusid | 7004878474 | - |
dc.description.lastpage | 2619 | - |
dc.description.firstpage | 2612 | - |
dc.investigacion | Ingeniería y Arquitectura | - |
dc.type2 | Actas de congresos | - |
dc.identifier.eisbn | 978-1-7281-8809-6 | - |
dc.utils.revision | Sí | - |
dc.date.coverdate | Mayo 2021 | - |
dc.identifier.conferenceid | events129888 | - |
dc.identifier.ulpgc | Sí | - |
dc.contributor.buulpgc | BU-BAS | - |
dc.description.sjr | 0,48 | |
dc.description.sjrq | - | |
dc.description.ggs | 2 | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Física | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0003-3878-3867 | - |
crisitem.author.orcid | 0000-0002-2924-1225 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Díaz Cabrera, Moisés | - |
crisitem.author.fullName | Ferrer Ballester, Miguel Ángel | - |
crisitem.event.eventsstartdate | 10-01-2021 | - |
crisitem.event.eventsenddate | 15-01-2021 | - |
crisitem.project.principalinvestigator | Ferrer Ballester, Miguel Ángel | - |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.