Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/107482
DC FieldValueLanguage
dc.contributor.authorMendonca, Fabioen_US
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo-Garcia, Antonio G.en_US
dc.date.accessioned2021-02-12T08:24:36Z-
dc.date.accessioned2021-06-11T09:07:51Z-
dc.date.available2021-02-12T08:24:36Z-
dc.date.available2021-06-11T09:07:51Z-
dc.date.issued2021en_US
dc.identifier.issn1741-2560en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/107482-
dc.description.abstractThe cyclic alternating pattern is a marker of sleep instability identified in the electroencephalogram signals whose sequence of transient variations compose the A phases. These phases are divided into three subtypes (A1, A2, and A3) according to the presented patterns. The traditional approach of manually scoring the cyclic alternating pattern events for the full night is unpractical, with a high probability of miss classification, due to the large quantity of information that is produced during a full night recording. To address this concern, automatic methodologies were proposed using a long short-term memory to perform the classification of one electroencephalogram monopolar derivation signal. The proposed model is composed of three classifiers, one for each subtype, performing binary classification in a one versus all procedure. Two methodologies were tested: feed the pre-processed electroencephalogram signal to the classifiers; create features from the pre-processed electroencephalogram signal which were fed to the classifiers (feature-based methods). It was verified that the A1 subtype classification performance was similar for both methods and the A2 subtype classification was higher for the feature-based methods. However, the A3 subtype classification was found to be the most challenging to be performed, and for this classification, the feature-based methods were superior. A characterization analysis was also performed using a recurrence quantification analysis to further examine the subtypes characteristics. The average accuracy and area under the receiver operating characteristic curve for the A1, A2, and A3 subtypes of the feature-based methods were respectively: 82% and 0.92; 80% and 0.88; 85% and 0.86.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Neural Engineeringen_US
dc.sourceJournal Of Neural Engineering [ISSN 1741-2560], v. 18 (3), 036004, (Junio 2021)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherA Phase Subtypesen_US
dc.subject.otherCAPen_US
dc.subject.otherLSTMen_US
dc.subject.otherRecurrence Quantification Analysisen_US
dc.subject.otherSleep Qualityen_US
dc.titleOn the use of patterns obtained from LSTM and feature-based methods for time series analysis: application in automatic classification of the CAP A phase subtypesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/1741-2552/abd047en_US
dc.identifier.isi000626887600001-
dc.identifier.eissn1741-2552-
dc.identifier.issue3-
dc.relation.volume18en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid43401654-
dc.contributor.daisngid41671201-
dc.contributor.daisngid1189663-
dc.contributor.daisngid42805308-
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mendonca, F-
dc.contributor.wosstandardWOS:Mostafa, SS-
dc.contributor.wosstandardWOS:Morgado-Dias, F-
dc.contributor.wosstandardWOS:Ravelo-Garcia, AG-
dc.date.coverdateJunio 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,504
dc.description.jcr5,043
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Artículos
Unknown (1,8 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.