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Abstract 

The cyclic alternating pattern is a marker of sleep instability identified in the electroencephalogram signals whose sequence of 

transient variations compose the A phases. These phases are divided into three subtypes (A1, A2, and A3) according to the 

presented patterns. The traditional approach of manually scoring the cyclic alternating pattern events for the full night is 

unpractical, with a high probability of miss classification, due to the large quantity of information that is produced during a full 

night recording. To address this concern, automatic methodologies were proposed using a long short-term memory to perform 

the classification of one electroencephalogram monopolar derivation signal. The proposed model is composed of three 

classifiers, one for each subtype, performing binary classification in a one versus all procedure. Two methodologies were 

tested: feed the pre-processed electroencephalogram signal to the classifiers; create features from the pre-processed 

electroencephalogram signal which were fed to the classifiers (feature-based methods). It was verified that the A1 subtype 

classification performance was similar for both methods and the A2 subtype classification was higher for the feature-based 

methods. However, the A3 subtype classification was found to be the most challenging to be performed, and for this 

classification, the feature-based methods were superior. A characterization analysis was also performed using a recurrence 

quantification analysis to further examine the subtypes characteristics. The average accuracy and area under the receiver 

operating characteristic curve for the A1, A2, and A3 subtypes of the feature-based methods were respectively: 82% and 0.92; 

80% and 0.88; 85% and 0.86. 

Keywords: A phase subtypes, CAP, LSTM, Recurrence quantification analysis, Sleep quality 

1. Introduction 

Sleep is a complex physiological process associated with 

the circadian rhythm [1], which is usually examined by 

polysomnography (PSG) [2]. This technique comprises the 

employment of multiple source sensors to attain accurate 

diagnosis [3]. Among the recorded sensors, the 

electroencephalogram (EEG) provides unique and significant 

information about the sleeping brain, working as the reference 

to define the sleep structure by considering five characteristic 

frequency bands: Delta (0.5 to 4 Hz); Theta (4 to 8 Hz); Alpha 

(8 to 12 Hz); Sigma (12 to 15 Hz); Beta (15 to 30 Hz) [4]. 

Conventionally, sleep is divided into macrostructure and 

microstructure [2] [5]. The macrostructure is a stepwise 

profile that categorizes sleep in stages, according to the 

prevalent EEG activity, in consecutive thirty second epochs 

(standardized scoring epoch). This structure oscillates 

between periods of Rapid Eye Movement (REM) and Non-

REM (NREM), which is divided into three stages (N1, N2, 
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and N3) [2]. On the other hand, the microstructure considers 

the time structure of phasic EEG events that are observed 

during the NREM stages [5]. These events have a shorter 

duration than the standardized scoring epoch; thus the one 

second duration epochs paradigm was developed for their 

evaluation [6]. The Cyclic Alternating Pattern (CAP) concept 

was developed as a tool to evaluate the microstructure. It is 

characterized by sequences of transient electrocortical events 

that are dissimilar from  the background  EEG  activity [7].  

The CAP is composed of a sequence of transient EEG 

variations, named A phases, that break the background rhythm 

of the ongoing sleep stage. Each A phase is directly followed 

by an intermittent recovery of background activity, identified 

as the B phase. Both A and B phases duration can range from 

two to sixty seconds [7].  

The amplitude and spectral contents of the EEG signal 

characterize the A phase and its three subtypes [6] [8]: 

 A1: Linked to mild or minor polygraphic variations and is 

characterized by synchronized EEG patterns (i.e. high-

voltage slow waves), specifically, sequences of delta bursts 

or K-complexes in the N2 and N3 stages and with the 

intermittent alpha rhythm in N1. Although high-voltage 

delta waves are the most prevalent is this subtype, the 

desynchronized pattern (i.e. low-amplitude fast rhythms) 

can still occur, but it must account for less than 20% of the 

total activation time. 

 A2: Associated with an increase of cardiorespiratory rate 

phases and/or muscle tone, with desynchronized EEG 

patterns, mixed with (or are preceded by) slow high-voltage 

waves such as arousals with slow wave synchronization, K-

alpha, and K-complexes with alpha and beta activities. 

These rapid activities account for 20% to 50% of the total 

activation time. 

 A3: Related with the occurrence of desynchronized EEG 

patterns which duration exceeds two thirds of the activation 

time. These are coupled with a significant increase in 

cardiorespiratory rate phases and/or muscle tone. Therefore, 

more than the 50% of the total phase has rapid activities 

(particularly in the beta band).  

The incidence of the A phase subtypes is correlated with 

age, as defined by Terzano et al. [6]. For healthy subjects, A1 

is the most prevalent, followed by A2 and A3 is the less 

predominant. However, as the age progresses, the incidence of 

A1 decreases (71% for adolescence, 61% for young adults, 

62% for mature adults, and 47% for senescence) while A3 

increases (9% for adolescence, 11% for young adults, 11% for 

mature adults, and 18% for senescence). The prevalence of the 

subtypes is almost the same during young and mature 

adulthood. The CAP phase’s transitions (A phase onset and 

offset) also exhibit characteristic patterns that can remarkably 

separate the activation phase from the EEG background 

activity [9] [10]. However, the detection of onsets was found 

to be easier to perform (showing values of energy that were on 

average three times higher than B phases values at all the sleep 

stages [9]) while the offsets present a smooth transition on the 

way to the basal sleep stage oscillations, thus, are harder to 

identify [11]. It was also reported that subtypes A1 and A3 are 

easier to separate, while the A2 subtype is similar to the A1 

subtype [11]. 

CAP is strongly related to the dynamic organization of 

sleep, as it designates a condition of the instability of the 

vigilance level, translating the brain effort to regulate and 

maintain the sleep macrostructure [8] [6]. It was suggested that 

the EEG synchrony, during sleep, is build-up and preserved 

through a fluctuating process of slow activities, associated 

with the A1 subtype, combined with a powerful inhibition of 

rapid EEG shifts linked to the A2 and A3 subtypes [6]. 

Therefore, the A1 subtype is mostly involved with the 

construction and consolidation of slow-wave sleep while A2 

and A3 subtypes modulate the REM sleep onset [8] [6]. It was 

also verified a prevalence of the A1 subtype (92%) through 

the sleep cycles in the descending branch while the A2 and A3 

subtypes (respectively, 45% and 19%) are more common in 

the ascending branch [12] [13].  

Taking into consideration the role of CAP in the sleep 

process, it was proposed that the regulatory mechanisms 

underlying the CAP recurrent fluctuations may become the 

pathophysiological source for disordered sleep [6] [14]. 

Therefore, alterations of the A phase subtypes can be a marker 

for the occurrence of sleep disorders such as sleep apnea [15], 

periodic limb movements [16], insomnia [17], narcolepsy 

[18], and nocturnal frontal lobe epilepsy [19]. Hence, CAP can 

express the stability of sleep and be considered as a sleep 

quality marker [20]. It was also observed that the temporal 

occurrence of the A phases shows consistency of self-affinity 

properties under different pathologies, suggesting that sleep is 

itself a resilient process [21]. 

All approaches found in the state of the art for the automatic 

A phase subtypes classification are based on the application of 

tuned thresholds or employing a machine learning classifier 

using multiclass methods. However, threshold-based 

methodologies can possibly be problematic to generalize for a 

broader population. On the other hand, CAP analysis based on 

machine learning typically suffers from strong imbalance 

data, where the number of epochs related to the background 

activity is significantly larger than the epochs associated with 

the A phase subtypes [22]. Therefore, the subtypes 

classification usually has a poor performance for at least one 

class where the sensitivity is low. Taking into consideration 

that each subtype has relevant information that requires to be 

individually analyzed to assess metrics (such as the incidence 

percentage of the subtype or the frequency of occurrence), the 

output of the multiclass classification is frequently converted 

to a binary time series that contains the variation of a subtype 

in the one versus all representation. Therefore, a novel 

approach was followed in this work, using three individual 

binary classifications (based on machine learning), one for 

each subtype, with the goal of investigate if a better 

performance can be attained when comparing to the other 

methods (since the model only focus on optimizing the 
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detection of one class) and provide the most relevant 

information that is usually evaluated by the physicians when 

a multiclass output is provided. 

It was also verified that most works employ features created 

by the researchers to improve the classification. However, 

classifiers such as LSTM can find relevant patterns in the 

signal that were not previously emphasized by any feature 

found in the state of the art. Therefore, two approaches were 

followed in this work: using features selected by a ranking 

procedure to feed the classifier (feature-based methods); to 

feed the pre-processed signal to the classifier (methods 

without an explicit feature creation procedure). 

Hence, the objective of this work is to evaluate the approach 

of using multiple binary classifications (one for each subtype), 

testing the feature-based methods and the methods without an 

explicit feature creation procedure. It is also intended to 

perform a characterization analysis for each subtype to attain 

a broader view of the characteristic patterns associated with 

them. 

This work is composed of five sections, organized as 

follows: an overview of the state of the art is presented in 

section 2; materials and methods are presented in section 3; 

the performance and results analysis of the developed models 

is presented in section 4; discussion of the results is presented 

in section 5; the work is concluded in section 6. 

2. State of the art 

Several classifiers were previously proposed to perform the 

CAP phase analysis [22] [23] [24] [25], and it was verified that 

artificial neural networks attained the best performance. 

Among these, the Long Short-Term Memory (LSTM), a type 

of the recurrent neural network, was identified as possibly the 

most suited to perform the classification [25] [26] since the 

CAP phases have a strong temporal dependency [7]. Such 

temporal correlations frequently occurs in the physiological 

signals [27] and can be identified by the LSTM, capable of 

finding both short and long-term correlations in the time series 

[28]. 

The usual approach for the A phase subtypes evaluation 

employs features that extract relevant information from the 

EEG signal. A summary of the features reported in the state of 

the art is presented in Table I. Most works employ statistical 

analysis to characterize the subtypes by evaluating the features 

[29], [30], [31], [32]. However, few works were found, in a 

literature review that was carried out for this work, performing 

the epoch based subtypes classification by feeding the features 

(or the EEG signal) to a classification procedure. Two main 

approaches for this procedure were found in the state of the 

art. The first performs the classification by applying tuned 

thresholds to the features. This methodology was used by 

Navona et al. [33] to examine a Macro-Micro Structure 

Descriptor (MMSD). Machado et al. [34], evaluated the 

Teager Energy Operator (TEO) and a MMSD for each of the 

characteristic EEG frequency bands. It was verified that, in 

general, TEO was the best feature. 
Table I.  Summary of the features presented in the state of the art, presenting 

for each feature the usual name (employed to reference the feature), a brief 

description, and the publications where it was used. 
Name Description Publications 

Discrete time 

short time 

Fourier 

transform 

Application of the discrete Fourier 

transform to the signal divided in 

windows to further assess other features 

such as the frequency of maximum 

energy or the frequency of mean energy 

[36], [35] 

Empirical 

mode 

decomposition 

Decompose the signal into intrinsic mode 

functions, and each function denotes an 

embedded characteristic oscillation on a 

disjointed time scale 

[36], [35] 

Fractal 

dimension 

Counts the number of occurrences of a 

sequence 

[36], [35], 

[11], [32], [9] 

Hjorth activity Evaluates the variance of the signal’s 

amplitude 

[23], [26] 

Lempel–Ziv 

complexity 

Metric that evaluates the randomness of a 

finite sequence 

[36], [35], 

[11], [32], 

[9], [31] 

Macro–micro 

structure 

descriptor 

(band 

descriptor) 

Measure of how the average EEG signal 

amplitude, in a defined frequency band, 

differs from its background 

[23], [26], 

[36], [35], 

[30], [33], 

[34] 

Power spectral 

density 

Describes the power distribution of the 

signal into the frequency components 

[29], [11] 

Sample 

entropy 

Measures the regularity of the signal [11], [32], [9] 

Shannon 

entropy 

Evaluates the complexity of a signal by 

estimating the probability for a given 

value to occur (high probabilities suggest 

that the signal has less information, 

leading to a smaller entropy) 

[26], [36], 

[35] 

Statistical 

features 

Statistical based characteristics such as 

mode, kurtosis, skewness, and standard 

deviation 

[11], [9] 

Teager energy 

operator 

Non-linear estimation of the 

instantaneous energy 

[26], [36], 

[35], [34] 

Tsallis entropy Metric that is a one-parameter 

generalization of the Shannon entropy 

[11], [32], [9] 

Variance Measurement of the signal’s spread [23], [26], 

[36], [35] 

Zero-crossing 

ratio 

Number of baseline crossings and can 

provide information about the dominant 

frequency 

[36], [35] 

The second approach employs a machine learning 

algorithm to learn the patterns from the features (or the EEG 

signal) and perform the classification. This methodology was 

used by Machado et al. [35] [36], evaluating the MMSD, TEO, 

zero-crossing rate, Lempel–Ziv Complexity (LZC), discrete 

time short time Fourier transform, empirical mode 

decomposition, Shannon Entropy (SE), Fractal Dimension 

(FD), and variance. The features’ relevance was assessed by 

the Minimal-Redundancy-Maximal-Relevance (mRMR) 

algorithm and fed to a classifier. Quadratic discriminant 

analysis, k‑Nearest Neighbors (k‑NN), and Support Vector 

Machine (SVM) were tested, and it was verified that SVM 

attained the best results using the top forty features ranked by 
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mRMR. Hartmann and Baumert [26] used the Hjorth activity, 

SE, TEO, MMSD, and differential variance as features, fed to 

an LSTM. It was concluded that the usage of time sequences 

improved the classification performance. 

A group of statistics (standard deviation, mode, kurtosis, 

and skewness), frequency (power in the characteristic EEG 

frequency bands) and complexity (LZC, FD, sample entropy, 

and Tsallis entropy) features were evaluated by Mendez et al. 

[11]. These features fed a k‑NN to perform the classification. 

It was observed that the A2 subtype is the most commonly 

misclassified due to their similarity with the other two 

subtypes. Therefore, it was suggested the need for a deep study 

to understand how to measure other features that the experts 

detect, which could possibly not be explicitly defined in the 

scoring rules. Arce-Santana et al. [37] fed the EEG signal to a 

Convolutional Neural Network (CNN), training the classifier 

with 25% of the total activation phases present in the studied 

population. It was proposed that an ad-hoc classifier, trained 

for each subject, could possibly provide an alternative view to 

the fully automatic methods.  

Through the state of the art analysis, it was observed that 

LSTM is a prime candidate for an analysis characterized by a 

strong temporal dependency. It was also verified that multiple 

features are relevant for the subtype classification where 

information is present in both time and frequency domains. 

3. Materials and methods 

Two methodologies were studied to examine the signal 

from one EEG monopolar derivation. The first created 

features from the pre-processed signal, chosen according to a 

ranking and fed them to the classifier. The second fed the pre-

processed signal to the classifier, without an explicit feature 

creation procedure. 

The epoch by epoch evaluation of the A phase subtypes was 

performed by three individual binary classifications, each 

executing a one versus all analysis. The algorithms were 

developed in Python 3, and the block diagram of the 

experimental procedure is presented in Fig. 1. 

3.1 Studied Population 

Recordings from fifteen subjects (nine females and six 

males), were selected from the Physionet CAP Sleep Database 

[7] [38]. The subjects were free of neurological disorders and 

were recorded at the Sleep Disorders Center of the Ospedale 

Maggiore of Parma. A single-channel analysis was performed, 

evaluating a monopolar derivation (C4–A1 or C3–A2) that is 

considered to be essential for CAP scoring [7]. The 

recording’s length ranged from 430 to 573.5 minutes, with an 

average of 499.62 minutes. The subject’s age ranged from 23 

to 42 years old, with an average of 32.19 years old. 

Annotations regarding the A phases were provided by 

expert neurologists according to the scoring rules defined by 

Terzano et al. [7]. The distribution of the database labels over 

all the epochs (considering each one second epoch’s 

annotation) was 90%, 3%, 2%, and 5%, for “not-A”, “A1”, 

“A2”, and “A3”, respectively. It was observed that the dataset 

is strongly unbalanced, having considerably more “not-A” one 

second epochs than one second epoch referring to an A phase 

subtype. The distribution of the classified activation events 

was 61%, 21%, and 18%, for “A1”, “A2”, and “A3”, 

respectively. It is notorious that the A3 subtype distribution is 

about 7% higher than what is estimated for the normal 

population, while the A2 subtype distribution is 7% lower [6]. 

These distributions can possibly be related to specific 

characteristics of the population that was used to create the 

dataset. Fig. 2 presents the variation of the A phase subtypes 

duration where it is possible to conclude that the A3 subtype 

is, on average, the longest with the highest variation while the 

A1 is the shortest with the lowest variation.  

The spectral analysis of the A phase subtypes is presented 

in Fig. 3. The calculation was performed by first predicting the 

power spectrum of all A phase subtypes for each subject. 

Afterwards the results of all subjects were combined by 

considering the average of the power spectrum for each 

subtype. By evaluating the figure it is possible to verify that 

the A1 subtype is characterized by a prominent peak in the 

delta band. This peak is also present in the A2 subtype 

however, it has lower power and, in the A2 subtype, another 

significant peak occurs in the alpha band. The A3 subtype has 

a dominant peak in the same band that is followed by some 

power expressed in the beta band. These results are in 

agreement with the definition for each subtype [6] [8].  

 
Fig. 1.  Block diagram of the experimental procedure. 

3.2 Pre-processing procedure 

The database signals were recorded with a sampling 

frequency that varied between 100 Hz and 512 Hz. Therefore, 

a uniform database was produced by resampling all signals at 
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the lowest sampling frequency by decimation [39]. A constant 

factor of reduction for the sampling rate, s, was used and a 

standard lowpass filter (order eight Chebyshev type I filter, 

with a normalized cutoff frequency of 0.8/s and a passband 

ripple of 0.05 dB [40]) was employed to downsample the 

signal and avoid aliasing. Subsequently, the resampling 

process chooses each sth point from the filtered signal to 

create the resampled signal. Therefore, each one second epoch 

contained 100 sampling points. 

 
Fig. 2.  Box plot of the variation of the A phase subtypes duration. 

Indication of the subtype in the abscissa and time (in second) in the ordinate. 

 
Fig. 3.  Average curves and error bars (considering one standard error) of the 

A phase subtypes’ power spectrum analysis. Frequency (in Hz) in the 

abscissa and power (in dB) in the ordinate. At 1 Hz the power of A1, A2 and 

A3 is -24 dB, -33 dB, and -35 dB, respectively. 

The process of resampling at the lowest resolution (re-

quantizing the signals if needed) allows the development of a 

device-independent estimation of the EEG signal, reducing 

the subject related variations of the dataset [41]. The 

resampled signals were subsequently standardized (subtract 

the mean and divide by the standard deviation) to nullify the 

effect of systematic variations of the data [42]. 

Several studies performed the removal of artifacts related to 

movements during sleep when studying the EEG signals [43]. 

However, these are frequently associated with the occurrence 

of a microstructure event, which in turn can be associated with 

the A phase subtypes that are intended to be classified [44]. 

Therefore, these events were kept. The eye movement and 

cardiac field artifacts were also recommended to be removed 

when studying the CAP [26]. Though these processes require 

both the electrocardiogram and electrooculogram signals that 

may not be available, for example, in home monitor devices. 

Therefore, this approach was not followed in this work to 

provide a method that is simple to apply in future hardware 

implementations, using as few sensors as possible (to be 

suitable for home monitoring devices which can be easily self-

assembled). For these reasons, the developed method employs 

the signal from one EEG monopolar derivation exclusively. 

3.3 Feature creation 

Contrarily to the methods without an explicit feature 

creation procedure, the feature-based methods require the 

creation of a new step between the pre-processing procedure 

and the classification. This step is responsible for the creation 

of the feature, which is fed to the classifier. 

The estimated features can be divided into three categories: 

evaluation of the amplitude variation; power in frequency 

bands; amplitude to frequency power ratio. Hence, the 

evaluated features allow to assess the A phase characteristic 

behaviors which present variations in both amplitude and 

frequency. 

A segmentation analysis (based on symbolic dynamics) and 

an amplitude variation metric were evaluated for the first 

category. The segmentation method was proposed for this 

work, and performed a transformation of the signal into a 

sequence of symbols by considering multiple thresholds for 

the amplitude of the signal. A segmentation example is 

presented in Fig. 4. Each threshold was selected to be a 

multiple of the standard deviation, σ, thus, significantly 

simplifying the signal to a sequence of symbols (nine was 

found to be the most suitable number of thresholds using an 

experimental method described in the next section). The key 

element of such analysis is to identify the suitable multiplier, 

M, to apply. From the vector that contained the sequence of 

symbols, Vs, it is possible to evaluate several statistical 

features [45] [24]. However, to avoid redundant information 

(taking into consideration that frequency-based features and 

features focused on the relation between amplitude and 

frequency were employed in the other two categories), the 

vector analysis was based on the number of occurrences of 

each symbol. Such information can be especially relevant for 

the LSTM that evaluates the time-based variations over 

multiple time steps.  

The last feature of this category was the amplitude variation 

metric, Av given by  

Av = max(E) – [max(E-1) – max(E-2)]                                        (1) 

where max is the maximal value and E is the epoch. This 

feature is proposed in this work. It takes into consideration the 

fact that the amplitude of the phasic activities that initiate an 

A phase must be 33.3% higher than the background voltage of 

the previous two seconds [13]. Therefore, this feature 

evaluates the maximum amplitude variation of the current 

epoch with respect to the variation of the previous two epochs 

(given by max(E-2)-max(E-1)), working as a marker for the 

activation phase transitions. 

The Power Spectral Density (PSD) of each of the five 

characteristic EEG frequency bands (Delta, Theta, Alpha, 

Sigma, Beta) was considered as features that composed the 

second category. These features were previously identified as 

possibly the most relevant for A phase analysis [22]. The PSD 

of each frequency band was computed using the Welch’s 

method [46], employing the Hanning window with an overlap 

of 50%.  
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The third category of features combined information from 

the two previous categories by considering the ratio of the 

maximum value of the epoch to the estimated PSD for each 

characteristic EEG frequency bands. These metrics follow a 

similar concept that was used for the macro–micro structure 

descriptors [26]. However, the proposed ratio combined 

information of both time (maximum value of the epoch) and 

frequency (PSD of the frequency band) instead of evaluating 

the mean power of the frequency bands. A summary of the 

evaluated features is presented in Table II, where the number 

of occurrences of symbols 1 to 9 are ordered from negative to 

positive variation as presented in Fig. 4. 

 
Fig. 4.  Example of the signal segmentation, with five thresholds (M=5), and 

creation of the vector that contained the sequence of symbols. Sequence of 

selected symbols in the abscissa and variation of the amplitude (evaluating 

multiples of the standard deviation) in the ordinate. 

A vector with all the features was created and the relevance 

of each feature for each classification was assessed using a 

feature selection algorithm. Specifically, the mRMR [47] was 

used to rank the features by simultaneously minimizing the 

redundancy and maximizing the relevance. The mRMR is a 

classifier independent method thus, the selected feature set is 

most likely to have a better generalization potential (feature 

set that is relevant for multiple classifiers) than a sequential 

feature selection method [48]. Afterward, a feature vector F 

was created, containing the chosen features. 

3.4 Classification 

A combination of LSTM and fully connected networks 

(dense layers) was used to perform the classification. 

The LSTM is composed of memory cells that can 

sequentially process the input and retain their hidden state 

through time. Each cell is controlled by the input, output and 

forget gates. The first two control the flow of activations into 

the cell and from the cell to the remaining network while the 

last gate adaptively resets the cell’s state [49] [50]. The 

hyperbolic tangent was employed as the activation function 

applied to the hidden states, h, and the hard sigmoid as the 

recurrence activation function [28]. 

Each time step of the LSTM layer corresponds to a cell and 

each cell is made up of multiple hidden units. The number of 

hidden units of the last cell defined the output of the LSTM 

(layer for the current epoch) and these activations were sent 

forward to the next layer. Since only the hidden state of the 

last cell was propagated to the next layer thus, the model 

performs an epoch by epoch analysis that takes into 

consideration the previous time steps. For the feature-based 

analysis, F was composed of features chosen (by the mRMR 

procedure) for each classification instead of containing the 

epoch’s pre-processed signal.   

A fully connected layer was used after the LSTM layer to 

increase the capability of a classifier to learn the nonlinear 

parameters, using the Rectified Linear Unit (ReLU) as an 

activation function. The softmax function was employed in the 

output to provide a probabilistic classification [28]. 
Table II.  Summary of the evaluated features, presenting the identification 

number, a brief description, and the employed denomination. 
Feature 

identification 

number 

Description Denomination 

1 Number of occurrences of symbol 1 V1 

2 Number of occurrences of symbol 2 V2 

3 Number of occurrences of symbol 3 V3 

4 Number of occurrences of symbol 4 V4 

5 Number of occurrences of symbol 5 V5 

6 Number of occurrences of symbol 6 V6 

7 Number of occurrences of symbol 7 V7 

8 Number of occurrences of symbol 8 V8 

9 Number of occurrences of symbol 9 V9 

10 Amplitude variation metric Av 

11 PSD of the Delta band PSDD 

12 PSD of the Theta band PSDT 

13 PSD of the Alpha band PSDA 

14 PSD of the Sigma band PSDS 

15 PSD of the Beta band PSDB 

16 Ratio of the maximum value to the 

PSD of the Delta band 

RD 

17 Ratio of the maximum value to the 

PSD of the Theta band 

RT 

18 Ratio of the maximum value to the 

PSD of the Alpha band 

RA 

19 Ratio of the maximum value to the 

PSD of the Sigma band 

RS 

20 Ratio of the maximum value to the 

PSD of the Beta band 

RB
 

3.5 Post-processing procedure 

A post-processing procedure was used to decrease 

misclassifications [51]. An epoch (lasting one second) was 

designated as misclassified if it was bounded by two opposite 

classifications. Since binary classification was used, a 
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succession of 010 was corrected to 000 and 101 to 111. 

3.6 Performance assessment 

The performance of the developed models was assessed by 

the standard performance metrics [52], specifically, the 

Accuracy (Acc), Sensitivity (Sen) and Specificity (Spe). The 

diagnostic capability was measured by the Area Under the 

receiver operating characteristic Curve (AUC) which refers to 

the probability of a classifier to rank a randomly selected 

positive instance higher than an arbitrarily selected negative 

instance [53]. The average value and the standard deviation of 

the results were presented for each metric. Each simulation 

was repeated fifty times to attain statistically significant 

results. 

There is no detailed orientation for selecting the optimal 

hyperparameters for the classifier, such as the number of units 

in each cell or number of time steps [54]. Therefore, a grid 

search approach was followed in this work, testing multiple 

combinations. The model which attained the highest AUC 

(metric considered relevant to achieve a general measure of 

predictiveness [53]) was chosen as the best solution. The 

search procedure evaluated the type of layers, the number of 

hidden units of each layer, and the number of time steps of the 

LSTM. 

The first layer could be either a LSTM or a Bidirectional 

LSTM (BLSTM), while the second layer was either a dense 

layer or another LSTM (cascade of LSTM layers) followed by 

a dense layer. The number of hidden units of the LSTM layer 

was increased in steps of 100, starting at 100 while the time 

steps were increased in steps of 10 (starting with 5 time steps). 

The iterative search was performed until the AUC decreased 

or saturated the increment. The number of neurons of the fully 

connected layer was chosen to be either half, the same or twice 

the number of hidden units of the previous layer while the 

number of hidden units of a second LSTM layer, of a cascade 

model, was chosen to be the same as the number of hidden 

units of the first LSTM layer.  

The two-fold cross-validation scheme [28] was employed 

to perform the tests since it is a fast and reliable model, 

reducing the computational time required to perform the large 

number of simulations needed to complete the grid search. 

Eight subjects were randomly chosen to compose the training 

set and the remaining composed the testing set. Subject 

independent results were attained by only using the data from 

a subject either in the training or the testing set. The subjects 

that composed the sets were randomly changed in each 

simulation. 

The Adam algorithm [55] was employed for the network’s 

error optimization. Cost sensitive learning was used to 

mitigate the effect of class unbalance in the classification since 

it was found out that it consistently outperforms the sampling 

methods when the datasets have more than 10000 examples 

[56] and does not require to change the distribution of the data 

which could be problematic for a model that considers the 

information from previous time steps. 

Taking into consideration that each classifier is performing 

a one-versus-all evaluation (either A1 or not-A1, A2 or not-

A2 and A3 or not-A3), an error matrix was computed to 

further evaluate if the misclassifications of the subtypes were 

occurring due to the manifestation of another subtype or if the 

model was confusing the background activity with an 

activation phase. For each subtype classification a total of five 

counting variables were created (one for each subtype that is 

not the one related to the current classification, one for the 

NREM periods, one for Wake periods, and one for REM 

periods). Each time a false positive was detected the model 

verified if an activation phase, related to another subtype, 

occurred. If that was the case, then the counting variable 

related to that subtype was increased. Otherwise, the 

background activity was confused with an A phase and the 

counting variable related to the current macrostructure label 

was increased. The same process occurred each time a false 

negative was detected. The counting variables were then 

divided by the total number of misclassifications. 

3.7 Recurrence and spectral entropy evaluation 

The similarity of the A phase subtypes among each other 

and with the background activity was evaluated by the 

Recurrence Quantification Analysis (RQA) metrics. In this 

work, these metrics were used only for characterization 

purposes and are composed of Recurrence Rate (RR), percent 

determinism (DET), maximal line length in the diagonal 

direction (Dmax), Shannon entropy of the frequency 

distribution of the diagonal line lengths (ENT), and trend 

(TND) [57] [58]. Through the evaluation of these metrics, it is 

possible to characterize the behavior of the EEG signal (that 

has nonlinear temporal properties) during the activations. The 

goal of this investigation is to examine changes of the 

dynamics within EEG signal (event based analysis) and not 

quantify the dynamics of a whole EEG signal. 

Several works have proposed values for the RQA 

parameters [59]. However, these usually considered time 

windows with a fixed length. Nevertheless, a unique 

methodology was followed in this work where each A phase 

subtype's length can change.  Therefore, these parameters 

required to be properly chosen for each examined window. 

The recurrence analysis’s delay parameter was estimated 

using the mutual average information function [60] and the 

first local minima were chosen from an array of multiple 

possible solutions [61]. The embedding dimension was chosen 

by finding the first local minimum of the Kennel et al.’s false-

nearest neighbor algorithm [62], checking the number of false 

neighbors, in the phase-space, as a function of the number of 

embedding dimensions [61].  

The recurrence threshold parameter is the most difficult to 

tune. It is required to find a value that does not produce too 

many or too few recurrences since information about the 

dynamics will be lost in both scenarios [63]. The second 
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possibility (too few) is conceivably a worse case since the 

recurrences will mainly appear due to variations caused by 

noise. However, the scenario with too many recurrences 

includes points into the neighborhood which are simple 

consecutive points on the trajectory thus, hiding the recurrence 

structure [63]. Several works have proposed methodologies to 

estimate the optimal threshold [57]. For physiological time-

series, it was indicated that the threshold should be selected 

with the goal of keeping the percentage of recurrent points 

lower than 5%. However, this may not be feasible for noisy 

signals since noise could distort any existing structure [57]. In 

this work it was followed the recommendation of using five 

times the signal’s standard deviation as reference for the 

threshold when the noise can be a significant factor [63] [64] 

[65].  

Significance of the results attained by the RQA analysis was 

evacuated by surrogate testing through the iterative amplitude 

adjusted Fourier transform surrogates [66]. This algorithm 

preserves the amplitude distribution and the power spectrum 

of the original time series in the surrogate data. Therefore, the 

considered null hypothesis was: there is no difference between 

the average of an RQA metric estimated from the EEG signal 

or from the surrogate. The alternative hypothesis (selected 

when the p-value was less than 0.05) was: the RQA metric’s 

average is higher than the surrogate RQA metric’s average 

(we do not expect the original EEG signal to be less 

predictable than the surrogate data).  

The Spectral Entropy (SE) was computed to measure the 

spectral power distribution. This metric quantifies the 

regularity of the power spectrum during a specific period of 

time where a low entropy indicates the presence of few spikes 

where energy is concentrated and a high entropy is likely to be 

found on a broader spectrum with multiple relevant 

frequencies [67]. 

4. Results 

A total of three tests were performed. The first implemented 

a characterization analysis to evaluate the distinctive patterns 

in time and frequency domains of the A phase subtypes. The 

second and third tests assessed the performance of the 

methods without an explicit feature creation procedure and the 

feature-based methods, respectively. 

4.1 Characterization analysis 

The normalized (by the maximum value) average of the 

RQA metrics for each subtype is presented in Table III. By 

examining table, is it possible to verify that the RR increased 

from the A1 subtype to the A3 subtype, signifying an increase 

in the probability that a specific state will occur. However, RR 

was the metric with the lowest support for the alternative 

hypothesis thus, these results may not be conclusive. The 

opposite happens for the DET which attained the highest 

support for the alternative hypothesis, indicating that A1 

subtype is more prone to periodic behaviors while the A3 

subtype is more likely to be associated with chaotic processes. 

The Dmax is related to the divergence of the trajectory segments 

thus, it may suggest that A1 subtype presented the most 

divergent trajectories since it attained the lowest value for this 

metric (the support for the alternative hypothesis was 

excellent, advocating the significance of the results).  

Nonetheless, it is important to bear in mind that the 

employed methodology considered the full duration of each 

individual activation for the RQA metrics calculation, 

providing a comparative analysis between the A phase 

subtypes. Since the average duration of each subtype is 

considerably different, hence, the estimated metrics will be 

effected by this factor. This effect is particularly relevant for 

Dmax as it indicates how long was the longest diagonal line 

segment (excluding the main diagonal line of identity). The 

higher ENT for A1 subtype suggest that it has a higher 

complexity with the wider distribution of diagonal line 

lengths. The support for the alternative hypothesis, regarding 

the ENT, was excellent for all subtypes. For the TND the A3 

subtype presented a higher value, suggesting greater 

nonstationary dynamics. The support for the alternative 

hypothesis regarding the TND was excellent for all subtypes.  
Table III.  Normalized (by the maximum value) average of the RQA metrics 

for each subtype. The employed notation presents the average value of the 

RQA metric followed by the number of subjects which support the 

alternative hypothesis (in the left) and the average p-value (in the right, 

separated by dash) between brackets. 

Subtype 
RQA metrics 

RR DET Dmax  ENT TND 

A1 0.53 

(12 – 

0.05) 

1.00 

(15 – 

0.00) 

0.60 

(15 – 

0.01) 

1.00 

(15 – 

0.00) 

0.95 

(11 – 

0.03) 

A2 0.59 

(6 – 

0.13) 

0.80 

(15 – 

0.00) 

0.69 

(13 – 

0.03) 

0.86 

(14 – 

0.01) 

0.87 

(10 – 

0.07) 

A3 1.00 

(1 – 

0.27) 

0.61 

(15 – 

0.00) 

1.00 

(14 – 

0.01) 

0.85 

(14 – 

0.01) 

1.00 

(15 – 

0.01) 

It was observed that the A1 subtype attained on average the 

highest support for the alternative hypothesis while the A2 

subtype attained the lowest. These results can possibly be 

linked to the definitions of the subtypes where the A1 is 

associated with mild or minor polygraphic variations with 

high-voltage slow waves (synchronized EEG patterns) while 

the A3 is linked to a predominance of low-amplitude fast 

rhythms (desynchronized EEG patterns). The A2 subtype is in 

between the other two subtypes [6] [8]. However, it is 

important to keep in mind that the RQA metrics can change 

according to the chosen parameters. Nevertheless, it was 

verified that the RQA metrics are relatively stable over a broad 

range of values for the recurrence threshold [61]. 

The normalized (by the maximum value) average SE for the 

A1, A2, and A3 subtypes was 0.73, 0.85, and 1.00, 

respectively. It was verified that the A1 subtype has the lowest 

average SE, indicating a lower spread in the spectrum, while 

the A3 subtype usually has a low entropy at the beginning that 

quickly grows and becomes more stabilized, presenting the 

highest average SE thus, suggesting the presence of a broader 
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spectrum. Similarly to the recurrence analysis, the A2 subtype 

behavior is between the other two subtypes, having more 

variation in the SE than the A1 subtype but with a lower 

average than the A3 subtype. 

The B phases (background activity that lasts between 2 and 

60 seconds and is bounded by A phases) were also examined 

as a comparison point with the activations. The normalized (by 

the maximum value) average RQA metrics were 0.62, 0.88, 

0.66, 0.92, and 0.92 for RR, DET, Dmax, ENT, and TND, 

respectively. The support for the alternative hypothesis (with 

the average p-value between brackets) was 9 (0.07), 15 (0.00), 

15 (0.00), 15 (0.00), and 15 (0.01), respectively. Only the RR 

attained poor support while the support for the remaining 

metrics was excellent. The normalized (by the maximum 

value) average SE was 0.80. It was verified that the RQA 

metrics and SE are usually in between the A1 and A2 

subtypes. These results can possibly suggest that B phase 

events can have characteristics of the A2 and A3 subtypes, 

suggesting that the A1 subtype will be easier to identify than 

the A2 and A3 subtypes. 

4.2 Classification without an explicit feature creation 

procedure 

Several architectures were examined to determine the most 

suited for the A phase subtype classification without an 

explicit feature creation procedure (the pre-processed EEG 

signal fed the classifier). It was verified that using the LSTM 

followed by a dense layer, who’s number of hidden units was 

half of the number of hidden units of the LSTM, attained the 

best relationship between performance and complexity 

(number of parameters) of the model. The effect of increasing 

the number of hidden units of the dense layer or using a 

BLSTM (instead of the LSTM) was not relevant (less than 1% 

increases in the AUC), while the cascade LSTM models 

reduced the average performance. 

The variation of the AUC and Acc of the models according 

to the number of time steps is presented in Fig. 5. By 

evaluating the figure, it is possible to verify that A1 subtype 

classification was the least sensitive to the number of time 

steps, reaching the peak of the AUC using 25 time steps and 

an LSTM with 300 hidden units. On the other hand, the A2 

subtype presented a significant variation according to the 

number of time steps and reached the peak in the AUC using 

35 time steps and 100 hidden units. For the A3 subtype it is 

possible to verify that the LSTM can no longer effectively 

exploit the information provided by the time steps, attaining 

the best AUC using 100 hidden units. Therefore, the A3 

subtype classification was found to be the most difficult to be 

performed. The learning curved of the best models for each 

subtype are presented in Fig. 6. It is possible to observe, in the 

linear tendency line, that the performance of the models could 

possibly be improved by using more data, although this 

improvement is not likely to be significant as the learning 

curves started to reach a saturation point. 

The performance of the best models is summarized in Table 

IV. It was verified that the classifiers attained a similar 

accuracy for all subtypes’ classification. However, the A1 

examination attained a significantly better AUC, 

demonstrating a balanced performance (similar sensitivity and 

specificity) while the A3 evaluation presented the lowest 

AUC, expressing unbalanced results. The performance of the 

A2 subtype classification is in between the other two subtypes, 

reaching a higher AUC than the A3 examination but lower 

than the A1 classification. On the other hand, it was predicted 

that the specialist agreement in CAP classification, analyzing 

the same EEG signals, is in the 69% to 78% range [68]. The 

A1 and A2 subtypes classifications are within this range. 

However, the A3 subtype evaluation was lower, suggesting 

that further information should be provided to the classifier 

(this approach was followed in the next subsection by 

examining features). 

 
Fig. 5.  Variation of the AUC and Acc for different time steps of the models 

without an explicit feature creation procedure. The activation subtype is 

presented in the legend followed by the number of hidden units of the 

LSTM. Number of time steps in the abscissa and variation of the 

performance metric in the ordinate. 

 
Fig. 6.  Learning curves for the best models without an explicit feature 

creation procedure of each subtype. The linear tendency line and its equation 

are also presented. Percentage of used data in the abscissa and variation of 

the AUC in the ordinate. 

The error matrix of the results is presented in Table V. By 

examining the table, it was verified that the A1 subtype was 

mostly misclassified with a background activity (typically 

during NREM). Almost all misclassification occurred at the 

end of the activation phase where the classifier predicted a 

longer duration (frequently by one or two epochs) of the 

activation. Thus, the main difficulty for the A1 subtype 

classification was the accurate detection of end of the 

activation boundary. This difficulty is common for all 

subtypes classifications. 
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Table IV.  Performance of the methods without an explicit feature creation 

procedure for each subtype. 

Subtype 
Performance (mean ± standard deviation) 

Acc (%) Sen (%) Spe (%) AUC 

A1 82.92±3.65 83.11±7.22 82.90±4.15 0.910±0.015 

A2 81.66±5.90 63.97±11.23 82.03±6.19 0.822±0.029 

A3 76.97±7.09 56.03±8.63 77.69±7.58 0.727±0.025 

Table V.  Error matrix of the methods without an explicit feature creation 

procedure for each subtype. 

 

Miss-classified during an 

activation phase (%) 

Miss-classified during 

background activity (%) 

A1 A2 A3 NREM REM Wake 

A1 - 2.11 1.91 88.85 1.69 5.44 

A2 7.61 - 2.87 76.84 5.22 7.46 

A3 3.84 2.30 - 49.01 14.72 30.13 

For the A2 subtype, it was verified that some 

misclassifications occurred during an activation phase of 

another subtype, suggesting that the classifier was sometimes 

confusing the A2 subtype with other activations. This is likely 

related to the fact that the A2 subtype has characteristic traces 

of both A1 and A3 subtypes. It was also observed the increase 

of misclassifications related to REM or wake (after the sleep 

onset) periods. This tendency was more noticeable in the A3 

subtype, suggesting that some of the patterns associated with 

the A2 and A3 subtypes are similar to the background activity 

of the brain during these periods. Hence, the identified 

difficulties for the A2 subtype classification are the boundary 

detection (of the activation’s conclusion) and accurately 

discriminate between the other subtypes. 

The increase of misclassifications related to the background 

activity periods was identified as the major issue associated 

with the A3 subtype classification. Almost all wake (after the 

sleep onset) periods and more than a third of the REM periods 

were misclassified as an A3 subtype, strongly advocating the 

need to use specific features to help discriminate the 

occurrence of the activation phase. It was also observed that 

some misclassifications occurred when the A1 or A2 subtypes 

presented desynchronized EEG patterns. Therefore, the A3 

subtype detection was found to be the most challenging for the 

employed classifier and the identified difficulties are the 

boundary detection (of the activation’s conclusion), 

differentiate the desynchronized EEG patterns of the A3 

subtype, when comparing to the patterns of other activation 

phases, and correctly distinguish the presence of an A3 

activation and the occurrence of background activity. 

4.3 Feature-based assessment 

The mRMR algorithm was used to rank the evaluated 

features and the results are presented in Fig. 7. Table II 

presented the specification of the feature associated with the 

identification number. The higher the rank, the less relevant 

the feature is for the specific subtype classification.  

The number of thresholds considered for the symbolic 

dynamics was increased until they were considered the less 

relevant by the mRMR selection. It was verified that the limit 

was nine thresholds (M=9) as V1 and V9 (features with the 

identification number 1 and 9, respectively) are already in the 

bottom as the less relevant for the A1 subtype. The optimal 

number of features was found by testing the 20 possible 

feature sets (the first set was composed of only the most 

relevant feature, the second by the two most relevant features, 

and so one until the last set with all features). The features 

composing the feature set which attained the highest AUC 

were selected for the feature-based model assessment. 

 
Fig. 7.  Features ranked by the mRMR algorithm. A1 is indicated by ‘+’, 

A2 is indicated by ‘o’, A3 is indicated by ‘x’. Feature identification number 

(allusion to Table II) in the abscissa and ranking of the feature in the 

ordinate. 

Through a grid search approach it was verified that the 

LSTM with 300 hidden units followed by a dense layer, whose 

number of hidden units was half of the number of hidden units 

of the LSTM, attained the best compromise between 

performance and complexity (number of parameters) thus, it 

was used for all classifiers based on features. The variation of 

the AUC and Acc of the models according to the number of 

features is presented in Fig. 8. 

 
Fig. 8.  Variation of the AUC and Acc, for different time steps, according to 

the number of features selected by mRMR. The activation subtype is 

presented in the legend followed by the number of time steps of the LSTM. 

Number of features in the abscissa and variation of the performance metric 

in the ordinate. 

It was observed that 25 time steps provided the best AUC 

for all models, indicating that the classifiers were able to 

identify the temporal information provided by the time steps. 

The sequence of selected features, for A1 was: RB; Av; RD; 
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PSDT; RA; RS; PSDD; V4; PSDA; RT; PSDS; V7; V6; V2; V3; V8; 

V5; PSDB. For A2 was: PSDD; Av; PSDS; RB; PSDT; RA; RS; RD; 

PSDA; PSDB; RT; V3; V7. For A3 was: PSDB; Av; V3; V4. 

The best models’ performance is summarized in Table VI. 

From the AUC examination, the A1 subtype classification 

attained the best results, while the A3 subtype assessment is 

again the most challenging. The A2 subtype classification 

reported the lowest accuracy but the Sen and AUC are higher 

than the A3 subtype. By comparing the results of the feature-

based models with the results of the methods without an 

explicit feature creation procedure (Table IV), it is possible to 

verify the significant increase in the AUC (around 18%) of the 

A3 subtype classification, attained by the employment of 

features. This result was due to the major increase in the 

sensitivity (about 25%) of the model, with an also substantial 

increase of the specificity (around 10%).  

These results strongly advocate the feasibility of using 

features for the A3 subtype classification, suggesting that the 

model cannot extract all information when directly fed by the 

EEG signal. The AUC of the A2 subtype classification was 

also improved (around 7%) by using the feature-based models 

while the A1 subtype classification performance was similar 

for the feature-based models and the methods without an 

explicit feature creation procedure. It was also observed that 

the standard deviation of the performance was considerably 

lower for the feature-based models.  

Table VII presents an error matrix created to further 

evaluate the performance of the feature-based models. When 

comparing with the methods without an explicit feature 

creation procedure (Table V) it is possible to observe that the 

A1 misclassification caused by wake (after the sleep onset) 

periods was reduced. However, the system still retains the 

issue related to the boundary detection at the end of the 

activation. For the A2 subtype, the identified issues for the 

methods without an explicit feature creation procedure were 

mitigated. The feature-based models reduced the 

misclassifications related to the occurrence of wake (after the 

sleep onset) periods.  

The error matrix of the A3 subtype indicated a reduction of 

the misclassifications related to an A1 subtype's occurrence. 

The boundary issues were significantly reduced. However, the 

tradeoff was an increase in the misclassifications related to the 

occurrence of REM periods. These misclassifications can 

possibly be linked to the modulation of the REM sleep onset 

associated with the A2 and A3 subtypes [8] [6]. However, this 

issue can be significantly diminished by employing a method 

to remove the REM periods from the classification. This 

approach was followed by several works that perform the CAP 

analysis [30]. However, such methodology will require the use 

of either manual intervention, decreasing the usefulness of the 

model, or involve the use of a new classification procedure to 

classify the NREM and REM epochs. The automatic 

methodologies for sleep stage classification can be 

challenging since the specialist agreement, for sleep scoring, 

is probably lower than 90% [69]. 

Table VI.  Performance of the features based methods for each subtype.  

Subtype 
Performance (mean ± standard deviation) 

Acc (%) Sen (%) Spe (%) AUC 

A1 81.91±2.43 87.83±3.94 81.60±2.75 0.921±0.011 

A2 79.65±5.69 81.07±7.26 79.59±5.96 0.884±0.025 

A3 84.61±5.31 70.37±8.41 85.07±5.72 0.855±0.034 

Table VII.  Error matrix of the features based methods for each subtype.  

 

Miss-classified during an 

activation phase (%) 

Miss-classified during background 

activity (%) 

A1 A2 A3 NREM REM Wake 

A1 - 4.69 1.66 91.12 1.59 0.94 

A2 7.75 - 3.03 79.92 6.26 3.04 

A3 2.56 2.46 - 48.49 22.52 23.97 

5. Discussion 

It was observed that the A1 subtype has a low recurrence 

with energy concentrated in few frequencies. This is likely 

related to the predominance of high-voltage slow waves with 

the presence of few low-amplitude fast rhythms [6] [8]. The 

A3 subtype presented the highest SE average and recurrence, 

possibly due to the predominance of rapid activities with low-

amplitude [6] [8]. The A2 subtype behavior, which can be seen 

as a combination of A1 and A3 subtypes behaviors, is likely 

related to the presence (without having the predominance) of 

low-amplitude fast rhythms that are mixed with slow high-

voltage waves [6] [8]. 

A direct comparison between the attained results with the 

works presented in the state of the art is difficult to be 

performed since all other works used multiclass classification 

and then presented the results for the subtypes assessment 

(usually one versus all). A different approach was proposed in 

this work that consisted of training three classifiers (one for 

each subtype) that can be tuned with the goal of reaching the 

best performance for the subtype classification. Nevertheless, 

a first estimate of the results was attained by evaluating the 

models’ overall capability to discriminate against the 

subtypes. This comparison is presented in Table VIII. 

By evaluating Table VIII, it is possible to conclude that the 

proposed method attained, on average, the best results, while 

considering the most challenging methodology of not 

removing the EEG signal artifacts and the epochs not related 

to the NREM sleep. By not performing the NREM sleep 

isolation (removing the epochs not related to the NREM sleep 

hence, only performing the analysis during the NREM sleep) 

and doing one versus all classification with the other subtypes 

and the background activity, it increased the practical 

usefulness of the models and reduced the manual intervention. 

The threshold based approaches proposed by Machado et 

al. [34] and by Navona et al. [33] reached significant results. 

Although these methods are computationally efficient and 

simple to be implemented, the potential of the tuned thresholds 

for generalization (application of the methods to new 

populations) can be problematic if there are significant 

variations between the populations used for training and the 

new population where the trained classification procedure will 

be applied. Mendez et al. [11] reported a higher sensitivity 
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than the proposed methods for the A1 and A3 subtypes 

detection but a significantly lower sensitivity for the A2 

subtype classification. It is also relevant that the results 

reported were in the format subtype versus other two subtypes 

which will filter the non-CAP related events. Machado et al. 

[35], Hartmann and Baumert [26] and Arce-Santana et al. [37] 

reported a lower performance than the results reached in this 

work. Although Hartmann and Baumert [26] had reached a 

better sensitivity for the A3 subtype detection, the proposed 

method required the use of both electrocardiogram and 

electrooculogram signals in the preprocessing to remove the 

cardiac field and eye movement artifacts. Therefore, the 

process is more complex than the proposed method. 
Table VIII.  Performance of the methods proposed in the state of the art for 

the activation subtype classification, presenting the reference to the 

publication, a brief description of the employed method, the type of 

classification and the average of the performance metrics.  

Publications* Method Classification 

Average 

performance* 

Acc 
(%) 

Sen  

(%) 

Spe  

(%) 

[34] Tuned 

thresholds 

applied to 

the TEO 

A1 vs all - 80 83 

A2 vs all - 77 73 

A3 vs all - 67 74 

[33] Tuned 

thresholds 

applied to 

the MMSD 

A1 vs A2 and 

A3 combined 

- 81 81 

[11] Features fed 

to k-NN 

A1 vs A2 and 

A3 combined 

- 90 - 

A2 vs A1 and 

A3 combined 

- 43 - 

A3 vs A1 and 

A2 combined 

- 80 - 

[35] Features fed 

to SVM 

A1 vs all - 58 - 

 A2 vs all - 44 - 

 A3 vs all - 24 - 

[26] Features fed 

to LSTM 

A1 vs all - 63 - 

A2 vs all - 42 - 

A3 vs all - 71 - 

[37] Features fed 

to CNN 

A1 vs A2 vs 

A3 

77 - - 

This work Fed the pre-

processed 

EEG to 

LSTM 

A1 vs all 83 83 83 

 A2 vs all 82 64 82 

 A3 vs all 77 56 78 

 Features fed 

to LSTM 

A1 vs all 82 88 82 

 A2 vs all 80 81 80 

 A3 vs all 84 70 85 

* From the method that reported the best results 
“all” specifies the signal with the B phases and non-CAP related events 

“Global” designates the overall performance 

With the exception of Machado et al. [35], all machine 

learning based classifiers employed the NREM sleep isolation 

approach. However, as observed in the previous section, the 

practical implementation of these methodologies will require 

either manual intervention or a new classification procedure 

(to classify the NREM and REM epochs). It is also important 

to maintain the REM sleep epochs in the examination as some 

pathological conditions can generate CAP sequences in REM 

[35]. As a result, a method that can predict these occurrence 

has the potential to be clinically significant to identify such 

conditions. 

6. Conclusion 

A new approach for the automatic A phase subtypes 

classification was proposed, performing a one versus all 

analysis for each subtype. The proposed method executes the 

examination by evaluating the signal from only one EEG 

monopolar derivation without manual manipulation of the 

signal, without removing artifacts, and without eliminating the 

epochs that are not related to the NREM sleep (the REM or 

wake periods). 

The characterization analysis allows the assessment of how 

different the subtypes are from each other. It was verified that 

the A1 and A3 subtypes are the most dissimilar and that the 

A2 and A3 subtypes have some similarities with the B phases. 

The first observation can possibly be the reason why the A2 

subtype presented the lowest accuracy (a tendency that was 

also observed in other works presented in the state of the art). 

The error matrix of both feature-based methods and the 

methods without an explicit feature creation procedure 

pointed out that the A2 and, with a high prevalence, the A3 

subtypes were confused with the background activity during 

wake or REM periods, conceivably supporting the second 

observation. 

It was observed that the A1 subtype classification 

performance was similar for both feature-based methods and 

the methods without an explicit feature creation procedure. 

However, for the A3 subtype classification the feature-based 

methods were significantly superior, indicating that the 

methods without an explicit feature creation procedure did not 

properly identify relevant patterns. Nevertheless, the A3 

subtype classification was found to be the most challenging to 

be properly performed. This observation is in the same line as 

the findings reported by Mendez et al. [11] where it was 

predicted that the classification of the CAP phases could be 

affected by up to 25% of ambiguity and subjectivity, 

emphasizing the difficulties to perform an analysis of the 

CAP. As stressed in the scoring rules [6], the activations can 

present ambiguous limits due to inconsistent voltage changes 

and, if the EEG events do not clearly meet the characteristics 

of an activation phase then, they cannot be scored as part of an 

activation. It was verified that the highest variation in the 

activation duration was associated to the A3 subtype while the 

A1 subtype had the lowest variation. The longer variations of 

the A3 subtype can possibly be linked to an ill-defined phase 

offset detection. The misclassifications related to the offsets in 

the A3 subtype can possibly be associated to the longer 

average duration of this subtype as offsets present a smooth 

transition on the way to the basal sleep stage oscillations. 

Thus, the offset recognition can possibly be more ambiguous 

for a longer subtype.  

When comparing the performance attained by the proposed 

methods with other works presented in the state of the art, it 
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was verified that the proposed method attained on average the 

best results, advocating the relevance of the proposal. This is 

likely due to the possibility of optimizing the classifier for the 

subtype detection. It is also relevant to notice that the 

specialist agreement, analyzing the same EEG signals, for 

CAP analysis, ranges from 69% to 78% [68] and the 

performance of the proposed models based on features is 

either equal or slightly superior to the upper bound, advocating 

the relevance of the developed mythology for clinical 

applications. The features proposed for this work can also be 

applied to other fields, providing an added value for the 

developed work. They have also provided an inside for the 

underlying physiological processes associated with the CAP 

phases. The future steps in this research are the evaluation of 

the developed models in a bigger dataset, employ sensor 

fusion to combine the information of multiple EEG channels 

[70] to attest if the developed model’s performance can 

improve, and further examine the characteristic patterns of the 

subtypes with the goal of providing a deeper understanding of 

these events that can possibly lead to a reduction of the 

subjectivity in the CAP analysis. 
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