Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/107482
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Mendonca, Fabio | en_US |
dc.contributor.author | Mostafa, Sheikh Shanawaz | en_US |
dc.contributor.author | Morgado-Dias, Fernando | en_US |
dc.contributor.author | Ravelo-Garcia, Antonio G. | en_US |
dc.date.accessioned | 2021-02-12T08:24:36Z | - |
dc.date.accessioned | 2021-06-11T09:07:51Z | - |
dc.date.available | 2021-02-12T08:24:36Z | - |
dc.date.available | 2021-06-11T09:07:51Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 1741-2560 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/107482 | - |
dc.description.abstract | The cyclic alternating pattern is a marker of sleep instability identified in the electroencephalogram signals whose sequence of transient variations compose the A phases. These phases are divided into three subtypes (A1, A2, and A3) according to the presented patterns. The traditional approach of manually scoring the cyclic alternating pattern events for the full night is unpractical, with a high probability of miss classification, due to the large quantity of information that is produced during a full night recording. To address this concern, automatic methodologies were proposed using a long short-term memory to perform the classification of one electroencephalogram monopolar derivation signal. The proposed model is composed of three classifiers, one for each subtype, performing binary classification in a one versus all procedure. Two methodologies were tested: feed the pre-processed electroencephalogram signal to the classifiers; create features from the pre-processed electroencephalogram signal which were fed to the classifiers (feature-based methods). It was verified that the A1 subtype classification performance was similar for both methods and the A2 subtype classification was higher for the feature-based methods. However, the A3 subtype classification was found to be the most challenging to be performed, and for this classification, the feature-based methods were superior. A characterization analysis was also performed using a recurrence quantification analysis to further examine the subtypes characteristics. The average accuracy and area under the receiver operating characteristic curve for the A1, A2, and A3 subtypes of the feature-based methods were respectively: 82% and 0.92; 80% and 0.88; 85% and 0.86. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Journal of Neural Engineering | en_US |
dc.source | Journal Of Neural Engineering [ISSN 1741-2560], v. 18 (3), 036004, (Junio 2021) | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | A Phase Subtypes | en_US |
dc.subject.other | CAP | en_US |
dc.subject.other | LSTM | en_US |
dc.subject.other | Recurrence Quantification Analysis | en_US |
dc.subject.other | Sleep Quality | en_US |
dc.title | On the use of patterns obtained from LSTM and feature-based methods for time series analysis: application in automatic classification of the CAP A phase subtypes | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1088/1741-2552/abd047 | en_US |
dc.identifier.isi | 000626887600001 | - |
dc.identifier.eissn | 1741-2552 | - |
dc.identifier.issue | 3 | - |
dc.relation.volume | 18 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 43401654 | - |
dc.contributor.daisngid | 41671201 | - |
dc.contributor.daisngid | 1189663 | - |
dc.contributor.daisngid | 42805308 | - |
dc.description.numberofpages | 16 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Mendonca, F | - |
dc.contributor.wosstandard | WOS:Mostafa, SS | - |
dc.contributor.wosstandard | WOS:Morgado-Dias, F | - |
dc.contributor.wosstandard | WOS:Ravelo-Garcia, AG | - |
dc.date.coverdate | Junio 2021 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 1,504 | |
dc.description.jcr | 5,043 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-8512-965X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ravelo García, Antonio Gabriel | - |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
10
actualizado el 10-nov-2024
Visitas
83
actualizado el 27-abr-2024
Descargas
291
actualizado el 27-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.