Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/107285
Campo DC Valoridioma
dc.contributor.authorAmoakoh, Alex O.en_US
dc.contributor.authorAplin, Paulen_US
dc.contributor.authorAwuah, Kwame T.en_US
dc.contributor.authorDelgado‐Fernandez, Ireneen_US
dc.contributor.authorMoses, Cherithen_US
dc.contributor.authorPeña Alonso, Carolina Priscilaen_US
dc.contributor.authorKankam, Stephenen_US
dc.contributor.authorMensah, Justice C.en_US
dc.date.accessioned2021-05-24T18:04:12Z-
dc.date.available2021-05-24T18:04:12Z-
dc.date.issued2021en_US
dc.identifier.issn1424-8220en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/107285-
dc.description.abstractTropical peatlands such as Ghana’s Greater Amanzule peatland are highly valuable eco-systems and under great pressure from anthropogenic land use activities. Accurate measurement of their occurrence and extent is required to facilitate sustainable management. A key challenge, however, is the high cloud cover in the tropics that limits optical remote sensing data acquisition. In this work we combine optical imagery with radar and elevation data to optimise land cover classification for the Greater Amanzule tropical peatland. Sentinel‐2, Sentinel‐1 and Shuttle Radar Topography Mission (SRTM) imagery were acquired and integrated to drive a machine learning land cover classification using a random forest classifier. Recursive feature elimination was used to op-timize high‐dimensional and correlated feature space and determine the optimal features for the classification. Six datasets were compared, comprising different combinations of optical, radar and elevation features. Results showed that the best overall accuracy (OA) was found for the integrated Sentinel‐2, Sentinel‐1 and SRTM dataset (S2+S1+DEM), significantly outperforming all the other classifications with an OA of 94%. Assessment of the sensitivity of land cover classes to image features indicated that elevation and the original Sentinel‐1 bands contributed the most to separating tropical peatlands from other land cover types. The integration of more features and the removal of redundant features systematically increased classification accuracy. We estimate Ghana’s Greater Amanzule peatland covers 60,187 ha. Our proposed methodological framework contributes a robust workflow for accurate and detailed landscape‐scale monitoring of tropical peatlands, while our findings provide timely information critical for the sustainable management of the Greater Amanzule peatland.en_US
dc.languageengen_US
dc.relation.ispartofSensors (Switzerland)en_US
dc.sourceSensors [ISSN 1424-8220], v. 21 (10), 3399, (Mayo 2021)en_US
dc.subject250501-1 Biogeografía botánicaen_US
dc.subject5102 Etnografía y etnologíaen_US
dc.subject.otherClassificationen_US
dc.subject.otherFeature Selectionen_US
dc.subject.otherGoogle Earth Engineen_US
dc.subject.otherRandom Foresten_US
dc.subject.otherSentinelen_US
dc.subject.otherTropical Peatlanden_US
dc.titleTesting the contribution of multi‐source remote sensing features for random forest classification of the greater amanzule tropical peatlanden_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s21103399en_US
dc.identifier.scopus85105741241-
dc.contributor.authorscopusid57223371564-
dc.contributor.authorscopusid6701865572-
dc.contributor.authorscopusid57204514082-
dc.contributor.authorscopusid32667474400-
dc.contributor.authorscopusid7004646988-
dc.contributor.authorscopusid57223362292-
dc.contributor.authorscopusid34868238600-
dc.contributor.authorscopusid57213457991-
dc.identifier.issue10-
dc.relation.volume21en_US
dc.investigacionArtes y Humanidadesen_US
dc.type2Artículoen_US
dc.description.notasThis article belongs to the Section Remote Sensorsen_US
dc.utils.revisionen_US
dc.date.coverdateMayo 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-HUMen_US
dc.description.sjr0,803
dc.description.jcr3,847
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,8
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IOCAG: Geografía, Medio Ambiente y Tecnologías de la Información Geográfica-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Geografía-
crisitem.author.orcid0000-0002-8589-0553-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNamePeña Alonso, Carolina Priscila-
Colección:Artículos
miniatura
Adobe PDF (7,05 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.