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Abstract: Tropical peatlands such as Ghana’s Greater Amanzule peatland are highly valuable ecosys-
tems and under great pressure from anthropogenic land use activities. Accurate measurement of their
occurrence and extent is required to facilitate sustainable management. A key challenge, however, is
the high cloud cover in the tropics that limits optical remote sensing data acquisition. In this work we
combine optical imagery with radar and elevation data to optimise land cover classification for the
Greater Amanzule tropical peatland. Sentinel-2, Sentinel-1 and Shuttle Radar Topography Mission
(SRTM) imagery were acquired and integrated to drive a machine learning land cover classification
using a random forest classifier. Recursive feature elimination was used to optimize high-dimensional
and correlated feature space and determine the optimal features for the classification. Six datasets
were compared, comprising different combinations of optical, radar and elevation features. Results
showed that the best overall accuracy (OA) was found for the integrated Sentinel-2, Sentinel-1 and
SRTM dataset (S2+S1+DEM), significantly outperforming all the other classifications with an OA of
94%. Assessment of the sensitivity of land cover classes to image features indicated that elevation and
the original Sentinel-1 bands contributed the most to separating tropical peatlands from other land
cover types. The integration of more features and the removal of redundant features systematically
increased classification accuracy. We estimate Ghana’s Greater Amanzule peatland covers 60,187 ha.
Our proposed methodological framework contributes a robust workflow for accurate and detailed
landscape-scale monitoring of tropical peatlands, while our findings provide timely information
critical for the sustainable management of the Greater Amanzule peatland.

Keywords: tropical peatland; random forest; feature selection; classification; Sentinel; Google
Earth Engine

1. Introduction

Peatlands are characterized by the accumulation of partially decayed organic matter
formed from plant debris under waterlogged conditions [1]. They provide a wide range
of ecosystem services including carbon sequestration/storage, climate change mitigation,
improvement of water quality and runoff regulation, and the provision of a landscape
with cultural, recreational and livelihood values. Globally, peatlands hold an estimated
650 billion tonnes of carbon on 3% of the Earth’s land surface, the equivalent to more
than half of the carbon in the atmosphere or the carbon stored by Earth’s vegetation [2].
For their multiple benefits, the need for peatland conservation is widely recognized (i.e.,

Sensors 2021, 21, 3399. https://doi.org/10.3390/s21103399 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8394-1241
https://orcid.org/0000-0002-9394-5630
https://orcid.org/0000-0002-5603-1637
https://orcid.org/0000-0001-7222-9486
https://www.mdpi.com/article/10.3390/s21103399?type=check_update&version=1
https://doi.org/10.3390/s21103399
https://doi.org/10.3390/s21103399
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21103399
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 3399 2 of 25

the United Nations Framework Convention on Climate Change, Ramsar Convention on
wetlands, the Convention on Biological Diversity, United Nations Convention to Combat
Desertification) but has been hampered by short term economic priorities and national de-
velopment policies [3–5]. Large areas of peatlands have already been degraded (estimated
20–25%), and remaining areas are quickly disappearing as a result of logging and plantation
development, conversion to residential and industrial zones, climate change impacts and
accidental burning [2,6–9]. Not only do these land use changes reduce biodiversity, they
also turn peatlands into net emission sources of greenhouse gases (GHGs) at a faster rate
since draining of peatlands release greenhouse gases such as carbon dioxide from the
carbon stored within peat soils.

For sustainable management of remaining peatlands, a better understanding of fun-
damental variables including their spatial distribution and extent is required. However,
considerable uncertainties about these variables remain, particularly in the tropics. Gen-
erally, peatland research has focused strongly on boreal and temperate peatlands, with
tropical peatlands receiving much less attention. The past two decades have seen increased
interest in tropical peatland research [10–12], but most studies have focused on Southeast
Asia where an estimated 56% of tropical peatlands exist [13]. By comparison, African
peatlands are wholly understudied. Indeed, there remains a basic uncertainty about the
existence–extent and distribution–of peatlands in Africa. For instance, a very large peat-
land, approximately 14,550,000 ha in area and storing an estimated 30.6 billion tonnes
of carbon, was discovered only recently in the Congo Basin [14]. In Ghana, the Greater
Amanzule landscape has been reported as a tropical biodiversity hotspot undergoing rapid
development from agricultural plantation and urbanization [15,16]. Also, with an influx of
oil and gas activities on the Greater Amanzule landscape from 2011, a complex array of
pressures for peatland conversion are expected to intensify over at least the next decade [16].
However, to date, the spatial distribution and extent of peatland on the landscape is not
fully known. Generally, there is limited research on practical and cost-effective remote sens-
ing application (e.g., analysis on the sensitivity of tropical peatland to image features) for
tropical peatland mapping. Developing detailed, comparable and robust tropical peatland
maps in Africa is therefore an urgent priority–to inform policymakers and conservation
practitioners and to provide critical information for landscape planning and for enhancing
authorities’ capacity in monitoring, reporting, and verification (MRV).

Mapping allows both the location and quantification of the extent of pristine peatlands,
as well as identification of areas at risk due to their proximity to degraded zones [17]. In
addition, mapping functioning peatland areas can provide data to inform spatially explicit
and realistic restoration and protection goals. However, landscape mapping of tropical
peatlands remains a challenge, especially at regional, national and global scales, and this
has resulted in their consistent under-representation, or complete omission from, many
global vegetation maps [18,19].

Methodologically, optical data from high spatial resolution sensors such as Sentinel-2
(10 m multispectral imagery) and Landsat (30 m multispectral imagery) have been the
primary and most successful tool for mapping peatlands [20–26] mainly due to their spec-
tral detail. The enhanced spectral capabilities of optical sensors help to derive numerous
band ratios and indices, such as spectral vegetation indices (VIs) for monitoring vegetation
species [27–29]. VIs have several advantages over stand-alone spectral bands, including
decreased effect of soil background on canopy reflectance, enhanced variability of spectral
reflectance of target vegetation, reduced effect of atmospheric conditions and canopy ge-
ometry, and shading [30,31]. The application of optical sensing is however constrained by
the frequent cloud coverage in the tropics. For monitoring high cloud coverage areas, some
developments have been reported in using radar products [32–34]. Radar can penetrate
cloud cover and is also sensitive to variable soil moisture conditions which makes it suitable
for wetland mapping [19]. It offers detailed information on the often difficult to detect
characteristics of vegetation such as moisture, roughness and shape [35]. Additionally,
data from the Shuttle Radar Topographic Mission (SRTM) have been used to successfully
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identify hydrological landscape units in cloud-persistent areas (e.g., [36–38]). SRTM data
provides an estimate of elevation and is useful for identifying large-scale topographical
boundaries within tropical landscapes.

Recent classification approaches favour the integration of data from multiple sensors
for improved landscape characterization (e.g., [36,39–41]). Because of their complementar-
ity, optical, radar and topographical data fusion presents an increased opportunity to map
peatlands at fine scales in equatorial zones affected by cloud cover, although the choice
of appropriate features from these datasets remains a challenge. Past efforts to partially
map the Greater Amanzule peatland (predominantly mangrove) have relied on a single
source of data [42,43], plus participatory GIS and ground referencing methods [15,16].
In the present study, optical, radar and elevation remote sensing data and their various
combinations are used to classify the entire Greater Amanzule landscape. We determine
the optimal classification approach for the Greater Amanzule tropical peatland based on
the integration of image features derived from Sentinel-2, Sentinel-1 and SRTM data–thus
to advance geospatial methodologies for mapping tropical peatland. Specifically, the study
(i) defines the extent and distribution of peatland on the Greater Amanzule landscape; (ii)
proposes a framework for extracting appropriate Sentinel-2, Sentinel-1 and SRTM image
features for tropical peatland mapping; (iii) assesses how classifications of different combi-
nations of Sentinel-2, Sentinel-1 and SRTM image features compare; and (iv) determines
the sensitivity of land cover types to multi-source data features.

2. Materials and Methods
2.1. Study Area

The Greater Amanzule tropical peatland is located in the Western Region of Ghana.
The Region is bordered to the west by Cote D’Ivoire, to the east by the Central Region, to
the north by Ashanti and Western North regions and to the south by the Gulf of Guinea [16].
The catchment of the peatland lies within the Wet Evergreen Forest zone of Ghana and
traverses the four coastal Districts of Jomoro, Ellembele, Ahanta West and Nzema East
(Figure 1). The Greater Amanzule system is made up of a relatively pristine wetland
complex consisting of freshwater lagoons, rivers, forests, and grasslands [15]. The peatland
is patchy and access to its resources is uneven for fringe communities, influenced by
factors such as proximity and characteristics of the peat resources [15]. The area is rich in
indigenous avifauna and hosts various migrant species. It is classified as an Important Bird
and Biodiversity Area (IBA) by Birdlife International and it meets the criteria for designation
as a Wetland of International Importance according to the Ramsar Convention [44]. Another
important biodiversity characteristic of the site is the coastal area constituting important
turtle nesting sites [44]. Species include leatherback (Dermochelys coreacea), green (Chelonia
mydas), olive ridley (Lepidochelys olivacea) and hawksbill (Eretmochelys imbricate) turtles.

The study area falls within the equatorial climate zone, which is characterized by
moderate temperatures (annual average of 26 ◦C), and high rainfall and relative humidity
(annual averages of 1600 mm and 87.5%, respectively [45]). It experiences a double-maxima
pattern of rainfall with peaks in May–June and October–November, and a short dry season
(December–March) during which north-westerly winds bring slight harmattan conditions.
The hydrology of the area is driven by six rivers, one lake, and four estuaries [45].

The coastline where the study site is located is comprised of regular sandy beaches
with no headlands or rocky outcrops. The hinterland is generally low-lying and relatively
flat (Figure 2). These low-lying coastal areas extend inland after which the topography
becomes hilly.

Characteristic soils are predominantly forest oxysols [45]. The estimated mean above-
ground carbon stocks of swamp forest are 1.1429× 10−7 ± 1.592× 10−8 tC/ha in intact areas,
7.127× 10−8± 1.026× 10−8 tC/ha in degraded areas, and 2.046× 10−8 ± 1.212× 10−8 tC/ha
in deforested areas. The belowground carbon stocks for intact swamp forest is estimated at
2.286× 10−8 ± 3.18× 10−9 tC/ha, for degraded areas at 1.425× 10−8 ± 2.05× 10−9 tC/ha,
and for deforested areas at 4.09 × 10−9 ± 2.43 × 10−9 tC/ha [45]. Ajonina et al. [46] also
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estimated the total above ground carbon stored in intact mangrove forest at 65–422 tC/ha
with mean of 185 tC/ha.

In terms of socio-economic activities, local gin brewing, charcoal production, small-
scale farming and fishing, cash crop farming (rubber, coconut and palm oil) and small
scale trading are dominant. The major threats to the Greater Amanzule peatland include
illegal alluvial gold mining activities, the spread of the giant aquatic grass Vossia Cuspidata
resulting from eutrophication of the waters, which is affecting fishing, the absence of a
formal management regime for the landscape and the subsequent breakdown of traditional
conservation approaches to resource management.

Other threats include capture and consumption of turtles, bush burning, illegal log-
ging, charcoal burning, influx of oil and gas activities on the landscape, expansion of
plantations, illegal hunting of wildlife, and mangrove harvesting for fish smoking. Colo-
nization by the fern Acostricum of mangrove habitats is another concern [15,16].
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2.2. Satellite Remote Sensing Data

Multi-source and multitemporal optical and radar data were combined for land cover
classification of the Greater Amanzule landscape (Figure 2). A time series of multispectral
Sentinel-2 and Sentinel-1 imagery was collected throughout 2019, providing a data stack of
the whole annual cycle. Sentinel data provided by the European Space Agency (ESA) are
publicly available and have a relatively fine spatial resolution of 10–60 m for Sentinel-2 and
10 m for Sentinel-1. The Sentinel-2 instrument has 13 spectral bands covering the visible
and near infrared portions of the electromagnetic spectrum, including four red-edge bands
(703.9 nm–864.8 nm) which were traditionally only available to hyperspectral sensors and
have the advantage of providing key information on the state of vegetation. The Sentinel-1
dual-polarization C-band Synthetic Aperture Radar (SAR) data originated from the Level-1
Ground Range Detected (GRD) Interferometric Wide Swath (IW) products as ingested in
Google Earth Engine (GEE) [47]. The frequent revisit periods of the Sentinel constellations
(5 days for Sentinel-2 and 6-12 days for Sentinel-1) enabled large collections of images: 366
Sentinel-2 images and 63 Sentinel-1images (Table 1). This made it possible to create a high-
quality composite based on the average of many pixel scenes, thus reducing atmospheric
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and seasonal effects on classification. Further, elevation data from SRTM at 30 m resolution
was incorporated as ancillary data. These input data—Sentinel-2, Sentinel-1 and SRTM—
were arranged into six data combinations (described below in feature extraction and
selection section) for comparative land cover classification analysis.

Pre-processing of the data was carried out separately for the Sentinel-2 and Sentinel-1
datasets. Cloudy pixels in the Sentinel-2 imagery were eliminated using the cloud mask
(QA60 band) provided with Sentinel-2 data as well as a modified Landsat cloudScore
algorithm built to detect clouds using bands B1, B2, B8, B10 and B11 [41,48]. The algorithm
was customized for the region to create cloud-free image composites. The final Sentinel-
2 image was produced by computing the mean of all bands in the 40 to 60 percentile
range [41]. Compared to the full range of values, the 40–60 percentile range is less variable,
temporally stable and captures a more representative spectral characterization of land cover
by minimizing extreme atmospheric effects—given that we used a Level 1C product—and
the challenge of cloud persistence. Further, this helps to minimize errors due to seasonal
and phenological variations.
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Table 1. Satellite remote sensing data used for Greater Amanzule land cover classification.

Data Period Bands Number of
Images

Sentinel -1 SAR GRD:
C-band Synthetic

Aperture Radar Ground
Range Detected, log

scaling

2 January 2019–31
December 2019 VV, VH 63

Sentinel-2 MSI:
Multispectral Instrument,

Level-1C

1 January 2019–28
December 2019

B1, B2, B3, B4, B5, B6, B7,
B8, B8A, B9, B10, B11, B12

(B1 and B10 were only
used for cloud detection)

366

Shuttle Radar
Topography Mission

(SRTM) digital elevation
dataset

11 February 2000–12
February 2000 Elevation 1

Sentinel-1 GRD products available in GEE had been subjected to the following pro-
cessing steps using the Sentinel-1 Toolbox: thermal noise removal, radiometric calibration,
and terrain correction, to generate a calibrated and ortho-corrected product. Two different
polarisation bands were selected: single co-polarisation with vertical transmit/receive (VV)
and dual-band co-polarisation with vertical transmit and horizontal receive (VH).

The fused datasets were resampled to 20 m spatial resolution for the classification
using the nearest neighbour resampling method. The 20 m resolution was to ensure
consistency with the ‘red edge’ bands (B5, B6, B7, B8A) in Sentinel-2 which are useful in
classifying visually similar tree crops [49].

2.3. Reference Data and Classification Scheme

Reference data were collected for algorithm parameterization and training as well
as accuracy assessment of land cover classification. Reference data were acquired from
several sources, including existing inventory maps [15,16] and field surveys based on a
stratified random sampling approach to capture spatial and spectral landscape variations
while minimizing autocorrelation. Field survey was carried out by three of the research
team with extensive experience and familiarity with the landscape. Field survey data were
cross-referenced with interpretation of very high-resolution imagery available in Google
Earth Pro. The training data were delineated as polygon features and separate testing data
delineated as point features. The polygon extents were then used to extract image pixels to
train the classifier. Using polygon features helps to capture sufficient spectral variation for
each land cover class and has been found to produce better classification outcomes relative
to other approaches such as points (single pixels), point buffers (average pixel value) and
image objects (area statistics) [50,51]. A total of 50,581 pixels were collected as reference
data (Table 2).

Classifying large tropical landscapes from remote sensing data is complex due to
structural complexity, high heterogeneity and the absence of a universal classification
scheme for peatlands. Defining appropriate thematic classes based on the characteristics
of the study area and technical specifications of the imagery is therefore important. A
classification system was adopted based on extensive field observations of the study area
and a careful study of relevant literature. Peatland classes were adapted from Lawson
et al. [19] and comprised mangrove swamp, mixed swamp, palm swamp and bog plain;
plantation comprised coconut, rubber and oil palm; artificial and bare classes included
built-up land and bare surfaces, respectively. Other classes included sparse vegetation,
natural forest and water. In total, twelve classes were identified (described in Table 2).
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Table 2. Implemented land cover classes and the associated reference data. Training samples are expressed as total area of
polygons and number of pixels extracted from these polygons, and test samples represent number of points.

General Class Land Cover Class Class Description
Training Samples

Test SamplesArea of
Polygons (ha)

Number of
Extracted Pixels

Peatland

Mangrove swamp Mangrove cover along coastal
areas 24.1 1862 265

Mixed swamp
Permanent and regularly

flooded broadleaved trees and
palm (Raphia sp.)

241.3 5727 589

Palm swamp
Permanent and regularly

flooded areas of palm
(predominantly Raphia sp.)

50.9 1312 334

Bog plain
Areas dominated by

permanent and regularly
flooded areas of grasses

136.98 3479 269

Forest Natural forest
Closed broadleaved evergreen
forest with trees from medium

to large sizes
331.3 11,738 115

Sparse Sparse vegetation

Areas of sparse and/or
stunted plant growth

including other agricultural
lands (i.e., young plantation

trees, rainfed croplands)

5.8 301 242

Plantation

Coconut Plantation of mature coconut
trees 39.6 1350 282

Rubber Plantation of mature rubber
trees 49.3 1734 228

Oil palm Plantation of mature oil palm
trees 26 656 70

Artificial and
bare areas

Built-up

Developed land such as
buildings, asphalt roads and

concrete surfaces, human
settlements, industrial

facilities

41.7 1215 258

Bare surface

Areas of exposed soil or
ground/open areas devoid of

trees, grass or other
vegetation; often comprising
land cleared for development

3.5 101 172

Hydrology Water Water bodies such as rivers,
canals, lakes and sea 709 18,195 87

Total 1659.48 47,670 2911

2.4. Feature Extraction and Selection

Feature extraction is the derivation of new features from original image bands, e.g.,
deriving vegetation indices from Sentinel-2 bands and texture features from Sentinel-1
bands. Feature selection is the removal of irrelevant or redundant features, either original
or derived, from complete datasets [32]. This process was undertaken to create different
data combinations for integrated classification and subsequent comparison. All Sentinel-2,
Sentinel-1 and SRTM data features were derived using GEE. A total of 36 features reported
to be effective for vegetation and other land cover delineation were considered in our study
(Table 3). These included 12 original bands, 10 VIs, nine texture features, two temporal
features and three elevation features. Classification was conducted using six datasets: (1)
We first tested the original Sentinel-2 image bands (S2) since optical imagery is the standard
data source used for peatland classification. (2) Next, we extracted further spectral features—
principally VIs—from the Sentinel-2 bands to create an enhanced Sentinel-2 dataset (S2+).
(3) We then tested the original Sentinel-1 bands (S1) to assess the contribution of radar
data for peatland classification, even though it was expected that this dataset would prove
limited on its own. (4) Next, we extracted further texture and temporal features from the
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Sentinel-1 bands to create an enhanced Sentinel-1 dataset (S1+). (5) Then we combined the
enhanced Sentinel-2 and Sentinel-1 datasets (S2+S1+) to assess an integrated optical-radar
dataset for classification. (6) Finally, to this combined Sentinel-2 and Sentinel-1 dataset,
we added STRM-derived elevation features to assess an integrated optical-radar-DEM
dataset for classification (S2+S1+DEM). The feature combinations used for the classification
analysis are presented in Table 3.

Table 3. Features considered for land cover classification.

Dataset Source Index Number of Features References

S2 Sentinel-2 bands Blue, Red, Green, NIR, SWIR1, SWIR2, Red
Edge1, Red Edge2, Red Edge3, Red Edge4 10 [20–26,52]

S2+

Sentinel-2 bands plus
extracted vegetation

index and texture
feature

Blue, Red, Green, NIR, SWIR1, SWIR2, Red
Edge1, Red Edge2, Red Edge3, Red Edge4,
NDVI, GNDVI, LSWI, S2REP, NDWI, NBR,
NBR2, EVI, ARVI, MSAVI2, NDVI_stdDev

(standard deviation–texture)

21 [41,44,48,53,54]

S1 Sentinel-1 bands VH, VV 2 [32,39,49,53]

S1+
Sentinel-1 bands plus
extracted texture and

temporal features

VH, VV, VV_correlation, VV_variance,
VV_contrast, VH_correlation, VH_variance,

VH_contrast, VV_stdDev, VH_stdDev,
VV∆amplitude, VH∆amplitude

12 [32,39,49,53]

S2+S1+
Sentinel-2 and

Sentinel-1 bands, plus
extracted features

Blue, Red, Green, NIR, SWIR1, SWIR2, Red
Edge1, Red Edge2, Red Edge3, Red Edge4,
NDVI, GNDVI, LSWI, S2REP, NDWI, NBR,
NBR2, EVI, ARVI, MSAVI2, NDVI_stdDev,

VH, VV, VV_correlation, VV_variance,
VV_contrast, VH_correlation, VH_variance,

VH_contrast, VV_stdDev, VH_stdDev,
VV∆amplitude, VH∆amplitude

33 [41,44,48,53,54]

S2+S1+DEM

Sentinel-2 and
Sentinel-1 bands, plus

extracted features, plus
SRTM elevation

features

Blue, Red, Green, NIR, SWIR1, SWIR2, Red
Edge 1, Red Edge 2, Red Edge 3, Red Edge

4, NDVI, GNDVI, LSWI, S2REP, NDWI,
NBR, NBR2, EVI, ARVI, MSAVI2,

NDVI_stdDev, VH, VV, VV_correlation,
VV_variance, VV_contrast, VH_correlation,

VH_variance, VH_contrast, VV_stdDev,
VH_stdDev, VV∆amplitude, VH∆amplitude,

Elevation, Slope, Aspect

36 [36–38]

2.4.1. Vegetation Indices

Vegetation indices (VIs) are parameters sensitive to photosynthetic active radiation and
are commonly computed from the spectral reflectance of two or more bands. Ten indices
were calculated from the Sentinel-2 image: the normalized difference vegetation index
(NDVI; Equation (1)), the normalized difference water index (NDWI; Equation (2)), land
surface water index (LSWI; Equation (3)), enhanced vegetation index (EVI; Equation (4)),
atmospherically resistant vegetation index (ARVI; Equation (5)), normalized burn ratio
(NBR; Equation (6)), normalized burn ratio 2 (NBR2; Equation (7)), green normalized
difference vegetation index (GNDVI; Equation (8)), Sentinel-2 red-edge position index
(S2REP; Equation (9)), and modified soil-adjusted vegetation index (MSAVI2; Equation (10)).
All the indices were calculated at 20 m resolution using the equations below;

NDVI =
ρNIR− ρRed
ρNIR + ρRed

, (1)
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NDWI =
ρGreen− ρNIR
ρGreen + ρNIR

, (2)

LSWI =
ρNIR− ρSWIR1
ρNIR + ρSWIR1

, (3)

EVI = 2.5∗ ρNIR− ρRed
ρNIR + 6 ∗ ρRed− 7.5∗ ρBlue + 1

, (4)

ARVI =
ρNIR− (2ρRed− ρBlue)
ρNIR + (2ρRed− ρBlue)

, (5)

NBR =
ρNIR− ρSWIR2
ρNIR + ρSWIR2

, (6)

NBR2 =
ρSWIR1− ρSWIR2
ρSWIR1 + ρSWIR2

, (7)

GNDVI =
ρNIR− ρGreen
ρNIR + ρGreen

, (8)

S2REP = 705 + 35 ∗


(

ρRedEdge3+ρRed
2

)
− ρRedEdge1

ρRedEdge2− ρRedEdge1

, (9)

MSAVI2 =

(
2 ∗ ρNIR + 1−

√
(2 ∗ ρNIR + 1)2 − 8 ∗ (ρNIR− ρRed)

)
2

, (10)

where ρBlue, ρRed, ρGreen, ρNIR, ρSWIR1 and ρSWIR2 are the reflectance values of the respective
bands in Sentinel-2 sensor. The importance of these indices for vegetation discrimination
has been widely reported [55–57]. For example, combining NDVI, EVI, LSWI and NBR2
has been shown to provide a better separation of a dynamic tropical peatland [39]. Another
study has found that NBR, NDVI, ARVI, and LSWI are key features for discriminating
between rubber plantation and other vegetation types [54]. Several studies have also
demonstrated the usefulness of GNDVI, S2REP, and NDWI for mapping wetland, planta-
tion, and other land cover types [41,48,49].

2.4.2. Texture Features

Standard deviation metrics were computed on Sentinel-2 based NDVI and Sentinel-1’s
VH and VV bands using a 5 × 5 pixels moving window [41]. Thus, for each central pixel in
the 5 × 5 window, the standard deviation of the 25 pixels (in the window) was calculated
and the value applied to the corresponding (central) pixel in the output texture image.
Other radar derived texture features reported to be effective in discriminating vegetation
and other land cover types were calculated using the grey-level co-occurrence matrix
(GLCM) [49,58,59]; the size of the neighbourhood to include in each GLCM was set to 4
and the kernel was a 3 × 3 square using the glcmTexture function in GEE. Kernel sizes in
part determine the success of texture-based image classification. If the window size is too
small, enough spatial information cannot be extracted to distinguish among different land
features. If the window size is too large, it could overlap different features and introduce
spatial errors [60]. Our choice of kernel size followed literature in similar contexts [39,41].
The formulae of indicators used are shown in Equations (11)–(13):

Contrast =
Ng−1

∑
i,j=0

(i− j)2GLCM (i, j), (11)

Correlation =
Ng−1

∑
i,j=0

GLCM(i, j)

[
(i− µi)

(
j− µj

)
σi × σj

]
, (12)



Sensors 2021, 21, 3399 10 of 25

Variance =
Ng−1

∑
i,j=0

GLCM(i, j)(i− µ)2 (13)

where GLCM (i,j) is the entry in a normalized grey-level co-occurrence matrix; Ng is number
of distinct image grey levels, and µi, µj and σi, σj are the mean and standard deviations
respectively. Contrast describes the degree of chromatic change between neighbouring
pixels; correlation measures the linear dependencies of grey levels for neighbouring pixels;
and variance measures dispersion between neighbouring pixels; all of which were derived
from GLCM [39].

2.4.3. Temporal Features

Temporal features depicting soil moisture conditions were derived by computing the
amplitude decrease between SAR images (i.e., amplitude change between the 10th and
90th percentiles). This approach has already been shown suitable for relative surface soil
moisture retrieval from SAR [61–63].

2.4.4. Elevation Features

Lidzhegu et al. ([38], p. 97) defined a wetland as “an environment where fluvial and/or
tectonic processes have shaped the landscape such that topographic conditions become suited for
prolonged inundation sufficient for soil oxidation and establishment of hydrophytes”. Inherent in
this definition is the importance of topographic features for wetland delineation. Tropical
wetlands occur as linear features corresponding to the alignment of valley bottoms. An-
cillary features that help to identify topographic effects on hydrological processes were
thus derived from the SRTM digital elevation data at 30 m resolution [64]. A total of three
features were derived at each DEM pixel: slope, aspect and elevation [14,36,38].

2.5. Classification and Accuracy Assessement

The image features were standardized by subtracting the mean and scaling to unit
variance prior to classification. To deal with the challenge of overfitting, the recursive fea-
ture elimination (RFE) algorithm was used to reduce the number of features by eliminating
the least important features based on stratified 2-fold cross-validation scores. Important
features were then used to retrain a random forest (RF) model for the classification. The RF
machine learning is an ensemble classifier that combines decision trees, bootstrap aggrega-
tion (bagging) and random subspace methods for classification and regression [65]. The
combination of many weak learners in an ensemble thus contributes to RF achieving higher
accuracy compared to machine learning algorithms based on a single classifier [65,66]. RF
has become increasingly important in land cover classification in recent times because of its
nonparametric nature, ability to limit overfitting and its flexibility [32,53]. It is also known
for its high performance and efficiency in dealing with large input datasets with many
different features [65]. A machine learning analysis to assess the classification capabilities
of 179 classifiers revealed RF as the best classifier among others that included support
vector machine (SVM), decision trees, and neutral networks [67]. In their analysis of four
classifiers, Kaszta et al. [68] and Awuah et al. [51] also identified RF and SVM as the best
performers among others that included k-nearest neighbours (kNN) and classification and
regression trees (CART).

Two important parameters need to be set up in a RF classifier: the number of trees
(ntree) and the number of splits (mtry). The ntree and mtry were set at 100 and 2 respectively.
Nomura et al. [41] found that accuracy did not increase beyond 100 trees. We were also
interested in feature importance scores, to determine the relative contribution of each
image feature in the classification of the different land cover types. Some of the most
frequent approximations for feature selection in decision trees include Gini Index [69],
gain-ratio [70], and Chi-square [71]. We estimated the feature importance scores for the
overall classification using a RF-based Gini criterion. A RF usually uses the Gini Index as a
measure for the best split selection, which measures the impurity of a given element with
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respect to the rest of the classes. For example, when assigning an input pixel to a class (Ci),
for a given training set (T), the Gini Index measures feature impurity with respect to the
different classes and is expressed as;

∑ ∑
i 6=j

(
f (Ci, T)
|T|

)( f
(
Cj, T

)
|T|

)
(14)

where (f (Ci, T)/|T|) is the probability that the selected pixel belongs to class Ci [51,72].
Feature importance scores for each land cover class were subsequently estimated from the
product of the overall feature importance estimates and the standardized mean value of
each feature split for the given class.

A post-classification majority filter was applied to improve class homogeneity using a
3 × 3 pixel moving window. The accuracy of the map was evaluated using a confusion
matrix [73] from which producer’s, user’s, and overall accuracies were calculated to affirm
the validity and accuracy of the results. We also calculated the F-score of each land cover
class for all the image stacks to determine the degree of discrimination of a given land
cover class using Equation (15):

F− score =
2(UA− PA)

UA + PA
(15)

where UA and PA represent the user and producer accuracies of a particular land cover class.
The statistical significance of the comparative accuracies of the various data combinations
were also calculated using McNemar’s chi-squared test score from Equation (16);

z =
f12 − f21√
f12 + f21

(16)

where f12 represents the number of samples correctly classified in the first classification, but
incorrectly in the second classification, and f21 represents the number of samples correctly
classified in the second classification but incorrectly in the first. The result was assessed at
α = 0.05 significance level with a z = 1.96 critical value.

The methodological workflow of the study is summarised in the flowchart presented
in Figure 3.
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3. Results
3.1. Selection of Optimal Feature Variables

After executing the RFE, the optimal number of features was obtained, as shown in
Figure 4. This represents subsets of feature variables that combine to produce the best
classification accuracy. The results show that all features considered for the classifica-
tions of S2, S1, and S1+ were relevant, thus, the highest accuracy for these datasets was
obtained at the point where all features were used for the classification. For the other
three datasets—S2+, S2+S1+, S2+S1+DEM—cross-validation scores increased significantly
in the early stages and peaked when the number of features was 20, 25 and 29, respec-
tively. Beyond the maxima for these three datasets, cross validation scores fluctuated
with increasing feature numbers, signifying the presence of irrelevant or redundant fea-
tures which were not increasing classification accuracy. The analysis revealed that the
S2+, S2+S1+ and S2+S1+DEM datasets contained one, eight and seven redundant fea-
tures respectively which needed to be removed. The relevant features of the S2+ dataset
included nine original bands, 10 vegetation features and one texture feature. For the
S2+S1+ dataset, relevant features included eight original bands, 10 vegetation features, six
texture features and one temporal feature. For S2+S1+DEM, relevant features included
10 original bands, 10 vegetation features, six texture features, two temporal features and
one elevation feature. Our analysis showed that the cross-validation score increased with
increased number of image features. Accuracy scores followed a similar pattern where
S1 < S1+ < S2 < S2+ < S2+S1+ < S2+S1+DEM. This shows that the presence of more rele-
vant feature variables can result in improved classification accuracy. Table 4 shows the
optimal features retained for classification.

Table 4. Image features retained for land cover classification.

Datasets Index

S2 Blue, Red, Green, NIR, SWIR1, SWIR2, Red Edge 1, Red Edge 2, Red Edge 3,
Red Edge 4

S2+
Blue, Red, Green, NIR, SWIR1, SWIR2, Red Edge 1, Red Edge 3, Red Edge 4,

NDVI, GNDVI, LSWI, S2REP, NDWI, NBR, NBR2, EVI, ARVI, MSAVI2,
NDVI_stdDev

S1 VH, VV

S1+
VH, VV, VV_correlation, VV_variance, VV_contrast, VH_correlation,

VH_variance, VH_contrast, VV_stdDev (standard deviation), VH_stdDev,
VV∆amplitude, VH∆amplitude

S2+S1+
Blue, Red, Green, SWIR1, SWIR2, Red Edge 1, NDVI, GNDVI, LSWI, S2REP,

NDWI, NBR, NBR2, EVI, ARVI, MSAVI2, NDVI_stdDev, VH, VV,
VV_contrast, VH_var, VH_contrast, VV_stdDev, VH_stdDev, VH∆amplitude

S2+S1+DEM

Blue, Red, Green, NIR, SWIR1, SWIR2, Red Edge 1, Red Edge 4, NDVI,
GNDVI, LSWI, S2REP, NDWI, NBR, NBR2, EVI, ARVI, MSAVI2,

NDVI_stdDev, VH, VV, VV_var, VH_var, VH_contrast, VV_stdDev,
VH_stdDev, VV∆amplitude, VH∆amplitude, Elevation
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3.2. Land Cover Classification Accuracy

Sections of the six land cover classifications (S2, S2+, S1, S1+, S2+S1+, S2+S1+DEM)
are presented in Figure 5. Maps were visually similar for S2 and S2+, S1 and S1+, as well
as S2+S1+ and S2+S1+DEM, the differences of which were only revealed in quantitative
accuracy assessment.
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Figure 5. Land cover classification results of a small part of the study area (zoomed in for ease of
viewing) using the (a) S2, (b) S2+, (c) S1, (d) S1+, (e) S2+S1+ and (f) S2+S1+DEM datasets.

In general, land cover classifications were relatively accurate, with all overall accura-
cies approaching or exceeding 90%, except for S1 and S1+, as expected (Table 5). Of the
different datasets, S2+S1+DEM produced the highest overall accuracy (94%), followed
by S2+S1+ (92%) and S2+ (91%). Full error matrices of all classifications are available as
Supplementary Materials (Tables S1–S6).

Despite the visual similarities of the classified images, a McNemar test of signifi-
cance showed that accuracies of all datasets were significantly different from each other
(Table 5). This finding reaffirms the contention that accurate land cover mapping requires
the use of relevant features, and here feature optimization holds considerable value for the
mapping community.
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Table 5. McNemar’s chi-squared test score (z) of data pairs. Values in parenthesis represent p-value.
Data pairs that show statistically significant difference (p ≤ 0.05) and the best overall accuracy (OA)
are in bold.

Datasets

S2 S2+ S1 S1+ S2+S1+ S2+S1+DEM

S2 8.4767 1387.7 288.21 53.125 72.755
(0.0036) (0.0000) (0.0000) (0.0000) (0.0000)

S2+ 1429.7 334.89 29.009 47.617
(0.0000) (0.0000) (0.0000) (0.0000)

S1 987.85 1516.9 1541.4
(0.0000) (0.0000) (0.0000)

S1+ 426.97 440.41
(0.0000) (0.0000)

S2+S1+ 4.0635
(0.0438)

OA 89.83 91.03 70.95 78.02 92.88 94.30

The UA and PA results are presented in Table 6. The S2+S1+DEM stands out with
generally better results. The worst were found for S1 and S1+. To investigate the superiority
of the S2+S1+DEM classification against the other datasets, we compared class UAs and
PAs (Table 6). A total of 101 table cells (84%) showed improvement in either PA or UA with
S2+S1+DEM compared to the other datasets, whereas 8 cells (7%) showed another dataset
was better than S2+S1+DEM. This demonstrates the robust nature of the S2+S1+DEM for
discriminating different land cover classes–it performed better when compared to the other
datasets. For land cover classes in which the UA or PA did not improve by at least 10%
over the other datasets, accuracies were already generally high (>70%).

F-scores from all datasets are presented in Figure 6. Apart from S1 and S1+, all datasets
achieved high accuracies in differentiating the peatland classes (mangrove swamp, mixed
swamp, palm swamp and bog plain), with an F-score between 0.91 and 0.99. S2+S1+DEM
had the best F-score for all the land cover classes, between 0.80 and 0.99, which indicated
that this approach has strong potential for land cover classification, particularly for tropical
peatland mapping. The results also reaffirm the ability of the RF machine learning algorithm
to map complex landscapes accurately [32,65–68].
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Table 6. Producer’s accuracy (PA) and user’s accuracy (UA) of land cover classes for all datasets, and the difference in UA
and PA between S2+S1+DEM and each of the other datasets. Negative values indicate lower UA and PA for S2+S1+DEM
compared to the other datasets. The best UA and PA values for each class are in bold.

Land Cover
Classes

S2 S2+ S1 S1+ S2+S1+ S2+S1+DEM

UA PA UA PA UA PA UA PA UA PA UA PA

Mangrove 99.6 85.3 100.0 91.3 74.2 74.7 85.0 72.5 100.0 92.5 100.0 96.2
Mixed swamp 88.8 99.5 91.9 99.5 82.4 73.7 78.7 85.0 91.1 99.5 92.3 99.7
Palm swamp 98.2 99.1 98.5 98.8 85.0 91.9 89.4 95.8 98.8 99.4 99.4 99.4

Bog plain 88.3 98.1 91.3 97.8 78.0 97.4 87.4 97.8 96.0 97.4 95.0 98.1
Natural forest 60.8 95.7 62.4 96.5 18.9 90.4 33.2 96.5 66.5 98.3 80.3 99.1

Sparse vegetation 92.1 81.4 93.5 83.1 98.9 36.4 100.0 45.0 93.6 90.9 94.8 90.9
Coconut 88.6 60.6 88.8 64.9 78.6 46.8 83.2 51.1 90.2 65.3 90.9 70.9
Rubber 94.3 86.8 92.2 88.2 87.4 63.6 64.0 76.3 94.0 89.9 94.4 95.2

Oil palm 88.4 87.1 91.4 91.4 75.0 64.3 79.7 78.6 98.5 94.3 100.0 95.7
Built-up 87.6 88.0 87.6 87.6 81.5 57.3 88.0 67.2 90.6 96.5 90.5 95.7

Bare surface 96.9 91.3 100.0 90.7 97.7 73.4 96.7 83.8 99.4 90.1 100.0 90.1
Water 87.0 100.0 81.3 100.0 100.0 88.5 97.7 96.6 97.8 100.0 97.8 100.0

Difference (S2+S1+DEM—other datasets)

Mangrove 0.4 10.9 0.0 4.9 25.8 21.5 15.0 23.7 0.0 3.7
Mixed swamp 3.5 0.2 0.4 0.2 9.9 26.0 13.6 14.7 1.2 0.2
Palm swamp 1.2 0.3 0.9 0.6 14.4 7.5 10.0 3.6 0.6 0.0

Bog plain 6.7 0.0 3.7 0.3 17.0 0.7 7.6 0.3 −1.0 0.7
Natural forest 19.5 3.4 17.9 2.6 61.4 8.7 47.1 2.6 13.8 0.8

Sparse vegetation 2.7 9.5 1.3 7.8 −4.1 54.5 −5.2 45.9 1.2 0.0
Coconut 2.3 10.3 2.1 6.0 12.3 24.1 7.7 19.8 0.7 5.6
Rubber 0.1 8.4 2.2 7.0 7.0 31.6 30.4 18.9 0.4 5.3

Oil palm 11.6 8.6 8.6 4.3 25.0 31.4 20.3 17.1 1.5 1.4
Built-up 2.9 7.7 2.9 8.1 9.0 38.4 2.5 28.5 −0.1 −0.8

Bare surface 3.1 −1.2 0.0 −0.6 2.3 16.7 3.3 6.3 0.6 0.0
Water 10.8 0.0 16.5 0.0 −2.2 11.5 0.1 3.4 0.0 0.0

3.3. Feature Importance

A summary of the most important features for each dataset is presented in Figure 7.
The results varied considerably, depending on the feature types used in training the
RF classifier.

When the classifier was trained with the full dataset (S2+S1+DEM), elevation, was the
most important predictor variable, thereby highlighting the important role of topography
in peatland delineation. Although the S1 and S1+ datasets were relatively ineffective for
classification on their own, the radar derived features were consistently important predictor
variables in multi-source datasets, VH, VV and VH standard deviation in particular. Red
Edge 2 was the most important variable for the S2 dataset, but was deemed irrelevant in
S2+, S2+S1+, and S2+S1+DEM, showing that optimizing feature sets by removing irrelevant
features is an important step to avoid assumptions that can lead to reduced classification
accuracy. From this point on, we focus on S2+S1+DEM, owing to its general superiority
over the other datasets.

The sensitivity of the 12 land cover classes to the 36 features of the S2+S1+DEM
(described in Table 3 in Section 2.4) is demonstrated in Table 7. The original Sentinel-1
bands (VV and VH) were consistently important predictors for most of the vegetation
classes (both peatland and non-peatland vegetation classes) on the landscape. Elevation
feature derived from the SRTM data was also very important for discriminating vegetation
types, indicating that the spatial distribution of vegetation types is greatly influenced
by topographic information. One image feature which also stood out as being very im-
portant for differentiating unvegetated from vegetated areas is Sentinel-2’s SWIR 2 band.
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Results on how the other datasets discriminated the various land covers are presented as
Supplementary Materials (Tables S7–S11).
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Table 7. S2+S1+DEM feature importance for discriminating various land cover types (a, b, c, d and e in shaded cells represent the five most important features, respectively).

Classification
Features

Land Cover Classes

Mangrove Mixed
Swamp

Palm-
Swamp Bog Plain Natural

Forest
Sparse

Vegetation Rubber Coconut Oil Palm Built-Up Bare
Surface Water

Blue 0.001 0.001 0.005 0.025 0.010 0.004 0.003 0.003 0.005 0.097 0.073 0.005
Green 0.017 0.018 0.034 0.050 e 0.001 0.032 0.011 0.015 0.019 0.136 e 0.137 e 0.005
Red 0.010 0.014 0.027 0.109 a 0.009 0.032 0.006 0.012 0.015 0.282 a 0.416 a 0.033
Red Edge 1 0.012 0.011 0.018 0.027 0.007 0.019 0.009 0.011 0.013 0.048 0.077 0.001
Red Edge 2 0.010 0.009 0.013 0.008 0.012 0.016 0.013 0.012 0.014 0.009 0.020 0.009
Red Edge 3 0.009 0.009 0.013 0.007 0.013 0.017 0.015 0.013 0.016 0.007 0.017 0.010
NIR 0.024 0.024 0.033 0.020 0.036 0.045 0.038 0.033 0.041 0.018 0.039 0.027
Red Edge 4 0.008 0.009 0.011 0.007 0.012 0.015 0.013 0.012 0.014 0.006 0.012 0.009
SWIR 1 0.008 0.016 0.030 0.049 0.023 0.045 0.033 0.021 0.09 0.075 0.111 0.024
SWIR 2 0.003 0.018 0.035 0.102 b 0.024 0.066 c 0.039 0.021 0.032 0.240 b 0.251 b 0.031
NDVI 0.038 0.037 0.039 d 0.020 0.046 0.043 0.045 0.042 d 0.045 0.003 0.001 0.034
GNDVI 0.010 0.006 0.009 0.064 d 0.014 0.001 0.006 0.005 0.006 0.106 0.212 c 0.041 d
NDWI 0.038 0.038 e 0.041 c 0.030 0.048 0.046 e 0.048 d 0.044 c 0.047 d 0.013 0.027 0.030
EVI 0.027 0.027 0.036 e 0.011 0.044 0.050 d 0.045 e 0.039 e 0.047 e 0.014 0.005 0.036 e
MSAVI2 0.022 0.021 0.028 0.007 0.035 0.036 0.035 0.030 0.036 0.011 0.007 0.027
LSWI 0.025 0.005 0.008 0.099 c 0.014 0.014 0.003 0.011 0.0125 0.189 c 0.161 d 0.026
ARVI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NBR 0.029 0.018 0.015 0.049 0.024 0.008 0.017 0.022 0.024 0.165 d 0.094 0.007
NBR 2 0.017 0.015 0.017 0.008 0.017 0.016 0.018 0.018 0.018 0.006 0.012 0.010
S2REP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NDVI_stdDev 0.027 0.001 0.002 0.009 0.001 0.006 0.000 0.002 0.001 0.019 0.055 0.005
VH 0.106 a 0.106 a 0.092 a 0.045 0.101 b 0.093 a 0.097a 0.097 a 0.085 a 0.083 0.022 0.042 c
VV 0.093 b 0.089 b 0.083 b 0.016 0.082 c 0.070 b 0.074 c 0.082 b 0.079 b 0.072 0.018 0.054 b
VH_stdDev 0.051 c 0.058 c 0.027 0.008 0.058 c 0.038 0.039 0.038 0.024 0.044 0.018 0.032
VV_stdDev 0.038 0.036 0.024 0.002 0.034 0.017 0.020 0.026 0.022 0.059 0.001 0.021
VV_variance 0.001 0.001 0.002 0.001 0.008 0.000 0.001 0.001 0.002 0.029 0.011 0.002
VV_contrast 0.002 0.001 0.003 0.001 0.011 0.000 0.001 0.002 0.003 0.044 0.015 0.003
VV correlation 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000
VH variance 0.000 0.000 0.003 0.000 0.007 0.002 0.000 0.002 0.003 0.018 0.026 0.002
VH contrast 0.000 0.000 0.006 0.001 0.012 0.004 0.001 0.004 0.005 0.036 0.046 0.004
VH correlation 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000
VV∆amplitude 0.021 0.019 0.014 0.001 0.019 e 0.010 0.011 0.015 0.012 0.030 0.004 0.011
VH∆amplitude 0.048 d 0.054 d 0.025 0.002 0.053 0.036 0.036 0.036 0.022 0.036 0.017 0.030
Aspect 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
slope 0.0002 0.0006 0.001 0.002 0.007 0.003 0.008 0.002 0.000 0.001 0.005 0.004
Elevation 0.041 e 0.016 0.014 0.046 0.234 a 0.046 0.087 b 0.030 0.060 c 0.039 0.036 0.066 a
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3.4. Classification of the Greater Amanzule Tropical Peatland Using the S2+S1+DEM Dataset

The extent and distribution of the Greater Amanzule landscape are presented in Table 8
and Figure 8, respectively. Water aside, peatland classes constituted a significant proportion
of the landscape (23% of total area without water)—dominated by mixed swamp, palm
swamp, bog plains, and mangroves, respectively. The result clearly demonstrates a largely
vegetated landscape, with patches of built-up land making up only 5273 ha (<1%) of the
total landscape. While this may suggest a largely undeveloped landscape, it is important
to note that about 50,713 ha (8.7% total area) of the vegetated areas are plantations of
coconut, rubber and oil palm—this represents land use conversion from natural forest
and/or peatland. In the absence of clearly defined boundaries and management strategies,
the plantation development in Greater Amanzule should be an environmental concern
since similar land conversion has proved to be a major threat to tropical peatlands in South
East Asia [74–76].

Table 8. Land cover class areas in Greater Amanzule classification.

General Class Classes Area (ha) Percentage of
Study Area

Area of General
Class (ha)

General Class Percentage
of Study Area

Peatland

Mangrove swamp 1633.78 0.28

60,187.04 10.29
Mixed swamp 48,851.29 8.35
Palm swamp 5143.97 0.88

Bog plain 4558.00 0.78

Forest Natural forest 102,728.14 17.57 102,728.14 17.57

Sparse Sparse vegetation 41,856.35 7.16 41,856.35 7.16

Plantation
Coconut 18,109.00 3.10

50,713.28 8.67Rubber 29,998.06 5.13
Oil palm 2606.22 0.45

Artificial and
bare areas

Built-up 5273.31 0.90
5363.56 0.92Bare surface 90.25 0.02

Hydrology Water 323,878.13 55.39 323,878.13 55.39

Total 584,726.50 584,726.50
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Figure 8. Land cover classification of the Greater Amanzule peatland based on the S2+S1+DEM dataset.Figure 8. Land cover classification of the Greater Amanzule peatland based on the S2+S1+DEM dataset.

Patches of the landscape showed bare surfaces, mostly comprised of land cleared for
development. Field observations showed road construction works and the development of
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oil and gas industries. Although limited in number, roads have already been constructed
across some of the peatland of the Greater Amanzule (e.g., between Ellonyi and Kengen,
and between Alabokazo and Sanzule, on the Ankobra River [15]). No studies have yet
been conducted to ascertain the specific impact of roads on the peatland vegetation, hy-
drology or soil properties, although observation of palm swamp and mangrove die back at
Sanzule and Kamgbunli respectively, during the Alabokazu-Sanzule road construction [15],
suggests that roads could be having a negative impact on the peatland. Roads can divert
or impede water, act as a barrier to groundwater and channel flow, and eventually lead to
the degradation of peatland vegetation or carbon cycling. The siting of large oil and gas
facilities in the peatland [15] may have a negative impact, if not controlled. This has the
potential to drive up population, increasing demand for land and eventually peatland, and
construction work may have a negative impact on the hydrology of the area.

We estimate that the total peatland area in 2019 is 60,187.04 ha. Within the landscape,
mangrove occurred in patches and predominated around the Ankobra River, Bakanta, and
Miemia. A large block of mixed swamp could be found along the border of Ghana and
Cote D’Ivoire, on the River Tano, extending onto the Aby lagoon. Another large block of
mixed swamp was found around the stilt village, Nzulezo. Palm swamp and bog plain
occurred in patches, with the highest concentration around Nzulezu. These are areas
currently without any formal management regime in place and will thus require effort
from stakeholders, particularly local communities and government agencies, to ensure
their conservation.

In terms of the distribution of other land cover classes, coconut was highly concen-
trated in the western part of the landscape while rubber was highly concentrated in the east.
The concentration of oil palm was high at the Cote D’Ivoire boundary of the landscape in
the west, and sparse vegetation surrounded built-up areas.

4. Discussion

In this study, effort was focused on developing a robust framework for mapping the
Greater Amanzule tropical peatland of Ghana, using multi-source satellite imagery and a
RF algorithm within the GEE environment. The proposed framework provides a systematic
technique for extracting appropriate feature variables for tropical peatland classification.
This has been developed by integrating original spectral bands, plus derived vegetation
indices, texture and temporal features, as well as ancillary elevation data features into a
single composite dataset. Multi-sensor satellite imagery has complementary characteristics
which enabled improved detection of peatland and non-peatland classes. These land cover
types are difficult to map using single source datasets due to structural complexity and
high heterogeneity. Our results are consistent with earlier studies that combined optical
and radar dataset for land cover mapping, showing that the combination produces higher
overall accuracy over individual sensor dataset (e.g., [36,49,59]). The introduction of the
elevation data improved the accuracy of the optical-radar data combination significantly
(Table 4), thus confirming that classification enhancement may occur when a primary
dataset such as SRTM is integrated with other datasets for peatland classification [77]. The
lowest overall accuracy was observed with the Sentinel-1 only products (S1, S1+); this
is also consistent with previous studies (e.g., [39,59,78]). Despite the cloud penetration
advantage of Sentinel-1 data, it failed on its own to distinguish various land cover classes.
This suggests that the best way to maximize the utility of such data for various land cover
classes discrimination is to combine it with optical datasets as demonstrated in this study.
Da Silva et al. [79] also suggested advanced techniques such as SAR polarimetry to optimize
SAR for the discrimination of diverse land cover classes.

The overall accuracy of the S1 dataset (70%) reported in our studies was relatively
high when compared to other land cover classifications that utilized SAR and RF clas-
sifier (e.g., [59]). Our findings are however consistent with similar studies in wetland
areas [39,80,81]. Accuracy of the S1 dataset improved significantly, by 8%, when additional
Sentinel-1 features were extracted and combined with the original bands for classification.
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Likewise, the overall accuracy of the S2 dataset improved significantly when combined
with additional Sentinel-2 extracted features. The latter observation is contrary to observa-
tions made by Tavares et al. [59] who noted decreased accuracy when other optical features
were combined with the original bands. The decreased accuracy observed in their case
might be due to the presence of irrelevant or redundant features. It is therefore important
to optimize datasets by eliminating such redundant features for an improved accuracy in
the case of integrating more features.

The relevance of the multi-sensor features for the delineation of land cover compo-
nents of the tropical landscape using RF classifier is illustrated in Table 7 and Figure 7.
Elevation ranked as the most important feature when the landscape was classified with
the full dataset (S2+S1+DEM), illustrating the importance of topographical and landform
position in peatland occurrence and identification. Peatlands develop under long-term
water saturation of the soil and are found in areas where large amounts of water are
available or flowing (e.g., rivers, depression). Elevation models are known to be useful for
identifying hydrological landscape units [14,36,59]. This was further demonstrated when
the individual classes were considered; elevation proved the most important feature for
delineating water. We concur with Lidzhegu et al. [38] that topographic information de-
rived from the SRTM can better offer different geomorphologic characteristics which reflect
the habitats of different vegetation types and can help in their identification. Despite the
Sentinel-1 classifications (S1, S1+) proving relatively inaccurate overall, Sentinel-1 features
were consistently rated highly in combined datasets. The addition of Sentinel-2, especially
the NDWI feature, clearly leads to a more accurate distinction of peatland and non-peatland
classes—this is consistent with observations made by Slagter et al. [80] who also reported
the importance of NDWI for wetland delineation. In our study, texture features computed
from the Sentinel-1 image were of relatively low importance and were often removed as
redundant features. This could be because of the presence of other features such as the
original Sentinel-1 bands and the standard deviations of the VV, VH and NDVI bands
which played similar roles thus rendering the Sentinel-1 GLCM texture features less useful.

The sensitivity of land cover types to classification features was demonstrated in
Table 7. For example, when discriminating tropical peatland classes—mangrove, palm
and mixed swamp—Sentinel-1’s VV, VH and the standard deviation of the VH bands
acquired higher importance scores than the optical and elevation features considered.
This may be because microwaves from Sentinel-1 penetrate forests and interact with
different parts of trees to produce substantial volume scattering. As the importance of
VH and VV was high, it is likely that volume scattering (especially for VH in medium-
and high-vegetated peatlands), double-bounce scattering (especially for VV in low- and
medium-vegetated peatlands) and specular reflection (especially for VV in non- and low-
vegetated peatlands) contributed to accurate classification of peatland classes [80]. When
distinguishing between rubber and oil palm, elevation was among the most important
features. Elevation was also the most useful feature for separating natural forest from
peatland forest (e.g., mixed swamp, palm swamp). This demonstrates that the right
combination of multi-sensor features is important for the discrimination of diverse land
cover types as they maximize the complementarity of the optical spectral sensitivity and
the radar structural/geometric characteristics.

Our analysis estimates Ghana’s Greater Amanzule peatland at 60,187 ha, comprising
mangrove, mixed swamp, palm swamp and bog plain. This is a relatively large tropical
peatland with no formal/legal protection [15,16]. To date, community and NGO efforts
to manage sections of the peatland have tended to focus on mangrove forest. The results
(Table 8) however show that mangrove occupies the smallest area of the peatland classes
on the landscape. This underlines the need to broaden the scope of management foci to
include the other predominant peat classes. This is important because peatlands function
as hydrological landscape units; the hydrological connectedness means damage to one
part can have wide-reaching consequences on the whole system. Conservation efforts
that concentrate on only certain parts of a peatland unit may therefore allow peatland
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degradation due to activities outside the conserved zones, thus reducing the effectiveness of
that conserved area in achieving its conservation goals. An option to manage the unit would
be to extend the boundaries of existing conserved areas to the hydrological boundaries of
the peatlands that they encompass. Our analysis suggests that plantation development
may be a major threat to the Greater Amanzule peatland. This development bears close
resemblance to experiences with peatland landscapes in Southeast Asia, where plantation
development, predominantly rubber and oil palm, has been reported as the major threat
to peatlands [12,74–76,82,83]. This points to the need to manage plantation development
on the Greater Amazule landscape to ensure its sustainability. Available reports though
suggest that plantation developers have not been actively engaged in the current efforts by
NGOs and communities in their informal management of the landscape [15,16]. At present,
the Greater Amanzule peatland is relatively intact, hence the need to fully investigate
the threat and conservation priorities of the landscape to aid management decisions.
Research is also needed to evaluate the carbon stock of the Greater Amanzule peatland
to complement the work done by Ajonina et al. [46] and Asante and Jengre [45] who
investigated carbon stock in sections of the peatland. This will aid understanding of
the potential of the landscape to attract climate change mitigation funding to the benefit
of fringe communities. More broadly assessing the current and future potential of the
Greater Amanzule peatland to supply ecosystem services will help underline its importance
and motivate public protection and conservation of its unique ecosystem functions and
services [84]. The results from this study can be used as a baseline for onward analysis of
land cover change to understand the impact of plantation development and to simulate
future land uses. For instance, the distribution of coconut plantations in the study area is
reported to have been affected by a coconut disease that killed most coconuts in the eastern
part of the landscape. Time series analysis may again help to quantify the impact of the
disease, and subsequently help to prepare for similar situations in the future [16]. Finally,
even though our proposed framework is implemented on a relatively large area (e.g., when
compared to [74,83]), we still recommend its application on an even larger area to better
understand how the model will perform on more complex and heterogenous landscapes.

5. Conclusions

Tropical peatlands are highly valuable ecosystems and under great pressure from
anthropogenic land use activities. Accurate information on the distribution and extent
of peatland is therefore important for the sustainable management of remnant tropical
peatlands, especially in Africa where information on peatland is generally scarce. This study
presents the first attempt to define the extent and distribution of Ghana’s Greater Amanzule
tropical peatland using freely available multi-source satellite imagery and a robust machine
learning approach. We demonstrated the successful application of integrated optical,
radar and elevation data for mapping tropical peatland and demonstrated how carefully
selected data features maximise peatland classification accuracy. We further analysed the
sensitivity of land cover types to multi-source data features. From our analysis, integrated
Sentinel-2, Sentinel-1 and SRTM features (S2+S1+DEM) yielded the highest classification
accuracy, significantly outperforming five other dataset combinations. Analysis of the
sensitivity of land cover classes to multi-source features showed that elevation and radar
extracted features, particularly VV and VH, were important predictors for tropical peatland
delineation. We estimate the Greater Amanzule tropical peatland covers 60,187 ha. The
proposed methodological framework provides a reliable and robust workflow for accurate
landscape-scale monitoring of tropical peatlands. Additionally, our findings provide
timely baseline information critical for supporting the development of sustainable and
adaptive management strategies for conservation priorities, monitoring deforestation and
forest degradation, quantifying the carbon stock of the Greater Amanzule landscape and
supporting restoration projects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21103399/s1: Table S1. Confusion matrix for land cover classification of S2 dataset. Table S2.
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Confusion matrix for land cover classification of S2+ dataset. Table S3. Confusion matrix for land
cover classification of S1 dataset. Table S4. Confusion matrix for land cover classification of S1+
dataset. Table S5. Confusion matrix for land cover classification of S2+S1+ dataset. Table S6.
Confusion matrix for land cover classification of S2+S1+DEM dataset. Table S7. Feature importance
for discriminating various land cover types based on the S2 dataset. Table S8. Feature importance for
discriminating various land cover types based on the S2+ dataset. Table S9. Feature importance for
discriminating various land cover types based on the S1 dataset. Table S10. Feature importance for
discriminating various land cover types based on the S1+ dataset. Table S11. Feature importance for
discriminating various land cover types based on the S2+S1+ dataset.
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