Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/107176
Título: Analysis of the nosema cells identification for microscopic images
Autores/as: Dghim, Soumaya 
Travieso-González, Carlos M. 
Burget, Radim
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Palabras clave: Deep Learning
Disease Detection
Image
Image Processing
Machine Learning, et al.
Fecha de publicación: 2021
Publicación seriada: Sensors (Switzerland) 
Resumen: The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.
URI: http://hdl.handle.net/10553/107176
ISSN: 1424-8220
DOI: 10.3390/s21093068
Fuente: Sensors [ISSN 1424-8220], v. 21 (9), 3068, (Mayo 2021)
Colección:Artículos
miniatura
Adobe PDF (3,08 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.