Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/107176
Campo DC Valoridioma
dc.contributor.authorDghim, Soumayaen_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.contributor.authorBurget, Radimen_US
dc.date.accessioned2021-05-11T07:02:07Z-
dc.date.available2021-05-11T07:02:07Z-
dc.date.issued2021en_US
dc.identifier.issn1424-8220en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/107176-
dc.description.abstractThe use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.en_US
dc.languageengen_US
dc.relation.ispartofSensors (Switzerland)en_US
dc.sourceSensors [ISSN 1424-8220], v. 21 (9), 3068, (Mayo 2021)en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherDisease Detectionen_US
dc.subject.otherImageen_US
dc.subject.otherImage Processingen_US
dc.subject.otherMachine Learningen_US
dc.subject.otherNosema Diseaseen_US
dc.titleAnalysis of the nosema cells identification for microscopic imagesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s21093068en_US
dc.identifier.scopus85104823140-
dc.contributor.authorscopusid57216858504-
dc.contributor.authorscopusid57219115631-
dc.contributor.authorscopusid23011250200-
dc.identifier.issue9-
dc.relation.volume21en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateMayo 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,803
dc.description.jcr3,847
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,8
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDghim Ep Aatar, Soumaya-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
miniatura
Adobe PDF (3,08 MB)
Vista resumida

Citas SCOPUSTM   

5
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 17-nov-2024

Visitas

146
actualizado el 15-jun-2024

Descargas

94
actualizado el 15-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.