Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/78020
Título: | CO2 fluxes in the Northeast Atlantic Ocean based on measurements from a surface ocean observation platform | Autores/as: | Curbelo Hernández, David González-Dávila, M. González, A. G. González Santana, David Santana-Casiano, J. M. |
Clasificación UNESCO: | 251002 Oceanografía química | Palabras clave: | Air-Sea Co2 Exchange Co2 System Northeast Atlantic Northwest African Coastal Upwelling Surface Ocean Observation Platform |
Fecha de publicación: | 2021 | Proyectos: | CanBio (Gobierno de Canarias y Fundación Loro Parque) CARBOCAN (Consejería de Transición Ecológica, Lucha contra el Cambio Climático y Planificación Territorial, Gobierno de Canarias) |
Publicación seriada: | Science of the Total Environment | Resumen: | The seasonal and spatial variability of the CO2 system parameters and CO2 air-sea exchange were studied in the Northeast Atlantic Ocean between the northwest African coastal upwelling and the oligotrophic open-ocean waters of the North Atlantic subtropical gyre. Data was collected aboard a volunteer observing ship from February 2019 to February 2020. The seasonal and spatial variability of CO2 fugacity in seawater (fCO2,sw) was strongly driven by the seasonal temperature variation, which increased with latitude and was lower throughout the year in coastal regions where the upwelling and offshore transport was more intense. The thermal to biological effect ratio (T/B) was approximately 2, with minimum values along the African coastline related to higher biological activity in the upwelled waters. The fCO2,sw increased from winter to summer by 11.84 ± 0.28 μatm°C−1 on the inter-island routes and by 11.71 ± 0.25 μatm°C−1 along the northwest African continental shelf. The seasonality of total inorganic carbon normalized to constant salinity of 36.7 (NCT) was studied throughout the region. The effect of biological processes and calcification/dissolution on NCT between February and October represented >90% of the reduction of inorganic carbon while air-sea exchange described <6%. The seasonality of air-sea CO2 exchange was controlled by temperature. The surface waters of the entire region acted as a CO2 sink during the cold months and as a CO2 source during the warm months. The Canary basin acted as a net sink of −0.26 ± 0.04 molC m−2 yr−1. The northwest African continental shelf behaved as a stronger sink at −0.48 ± 0.09 molC m−2 yr−1. The calculated average CO2 flux for the entire area was −2.65 ± 0.44 TgCO2 yr−1 (−0.72 ± 0.12 TgC yr−1). | URI: | http://hdl.handle.net/10553/78020 | ISSN: | 0048-9697 | DOI: | 10.1016/j.scitotenv.2021.145804 | Fuente: | Science of the Total Environment [ISSN 0048-9697], v. 775, 145804, (Junio 2021) |
Colección: | Artículos |
Citas SCOPUSTM
10
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
10
actualizado el 17-nov-2024
Visitas
133
actualizado el 22-jul-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.