Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77695
Título: Normalization and shape recognition of three-dimensional objects by 3D moments
Autores/as: Galvez, J. M.
Canton, M.
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Computer vision
3D shape recognition
Shape normalization
3D moments
Surface representation, et al.
Fecha de publicación: 1993
Publicación seriada: Pattern Recognition 
Resumen: In this paper we are primarily concerned with the recognition of three-dimensional (3D) objects on the basis of the geometry of their physical surface. The 3D moments are defined on the object’s surface with two main aims: (1) to derive a normalized version irrespective of position, size, and orientation for each imaged object; and (2) to establish global descriptors, extracted from normalized shapes, in order to make up a representative feature vector to be used in recognition tasks. The source data are rnultiple orthographic views of 3D objects with known viewpoint specifications. A volume intersection procedure is used in the recovery of 3D object surface from two-dimensional (2D) data. The problem of normalization to achieve recognition of 3D objects is dealt with and a heuristic solution is proposed to lessen the inherent ambiguity of the principal axes method for object orientation. Experimental results are described with ten object categories. showing excellent percentage classification success rates by using only a small number of normalized moments as elements of the feature vector.
URI: http://hdl.handle.net/10553/77695
ISSN: 0031-3203
Fuente: Pattern Recognition [ISSN 0031-3203], v. 26 (5), p. 667-681
Colección:Artículos
Vista completa

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.