Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77615
Título: Statistics-based Classification Approach for Hyperspectral Dermatologic Data Processing
Autores/as: Martínez Vega, Beatriz 
Quevedo Gutiérrez, Eduardo Gregorio 
León Martín, Sonia Raquel 
Fabelo Gómez, Himar Antonio 
Ortega Sarmiento, Samuel 
Marrero Callicó, Gustavo Iván 
Castano, Irene
Carretero, Gregorio
Almeida, Pablo
Garcia, Aday
Hernandez, Javier A.
Uteng, Stig
Godtliebsen, Fred
Clasificación UNESCO: 320106 Dermatología
320713 Oncología
Palabras clave: Data Classification
Hyperspectral Imaging
Skin Cancer
Statistical Analysis
Fecha de publicación: 2020
Conferencia: 35th Conference on Design of Circuits and Integrated Systems - DCIS 2020
Resumen: Hyperspectral Imaging (HSI) for dermatology applications lacks a physical model to differentiate between cancerous or non-cancerous pigmented skin lesions. In this paper the statistical properties of a set of HSI data are exploited as an alternative to this limitation. The hyperspectral dermatologic database employed in the experiments is composed by 40 noncancerous and 36 cancerous pigmented skin lesions (PSLs) obtained from 61 patients. The preliminary experiments suggest the potential of a simple statistics metrics, such as the coefficient of variation, to distinguish between cancerous and non-cancerous PSLs using hyperspectral data. A sensitivity result of 100% was achieved in the test set providing an overall accuracy classification of 80%.
URI: http://hdl.handle.net/10553/77615
ISBN: 9781728191324
DOI: 10.1109/DCIS51330.2020.9268646
Fuente: 2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS)
Colección:Actas de congresos
Vista completa

Visitas

76
actualizado el 23-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.