Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/77615
Título: | Statistics-based Classification Approach for Hyperspectral Dermatologic Data Processing | Autores/as: | Martínez Vega, Beatriz Quevedo Gutiérrez, Eduardo Gregorio León Martín, Sonia Raquel Fabelo Gómez, Himar Antonio Ortega Sarmiento, Samuel Marrero Callicó, Gustavo Iván Castano, Irene Carretero, Gregorio Almeida, Pablo Garcia, Aday Hernandez, Javier A. Uteng, Stig Godtliebsen, Fred |
Clasificación UNESCO: | 320106 Dermatología 320713 Oncología |
Palabras clave: | Data Classification Hyperspectral Imaging Skin Cancer Statistical Analysis |
Fecha de publicación: | 2020 | Conferencia: | 35th Conference on Design of Circuits and Integrated Systems - DCIS 2020 | Resumen: | Hyperspectral Imaging (HSI) for dermatology applications lacks a physical model to differentiate between cancerous or non-cancerous pigmented skin lesions. In this paper the statistical properties of a set of HSI data are exploited as an alternative to this limitation. The hyperspectral dermatologic database employed in the experiments is composed by 40 noncancerous and 36 cancerous pigmented skin lesions (PSLs) obtained from 61 patients. The preliminary experiments suggest the potential of a simple statistics metrics, such as the coefficient of variation, to distinguish between cancerous and non-cancerous PSLs using hyperspectral data. A sensitivity result of 100% was achieved in the test set providing an overall accuracy classification of 80%. | URI: | http://hdl.handle.net/10553/77615 | ISBN: | 9781728191324 | DOI: | 10.1109/DCIS51330.2020.9268646 | Fuente: | 2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS) |
Colección: | Actas de congresos |
Visitas
76
actualizado el 23-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.