Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/76459
Título: Estimation and diagnostic tools in reparameterized slashed Rayleigh regression model: an application to chemical data
Autores/as: Gallardo, Diego I.
Gómez Déniz, Emilio 
Leão, Jeremias
Gómez, Héctor W.
Clasificación UNESCO: 530202 Modelos econométricos
Palabras clave: Expectation Maximization Algorithm
Linear Regression
Monte Carlo Simulation
Reparameterized Rayleigh Distribution
Fecha de publicación: 2020
Proyectos: Aportaciones A la Toma de Decisiones Bayesianas Óptimas: Aplicaciones Al Coste-Efectividad Con Datos Clínicos y Al Análisis de Riestos Con Datos Acturiales. 
Publicación seriada: Chemometrics and Intelligent Laboratory Systems 
Resumen: In this paper, we introduce a regression model where the response variable is reparameterized slashed Rayleigh (RSR) distributed and which is indexed by mean and precision parameters. The proposed regression model is useful for situations where the variable of interest is continuous and restricted to the positive real line and is related to other variables through the mean and precision parameters. In addition, the RSR model has properties that its competitor distributions of the exponential family do not have. Estimation is performed by expectation maximization (EM) and extensions. Furthermore, we discuss residuals and influence diagnostic tools. Finally, we also carry out two applications to real-world data that demonstrate the usefulness of the proposed model.
URI: http://hdl.handle.net/10553/76459
ISSN: 0169-7439
DOI: 10.1016/j.chemolab.2020.104189
Fuente: Chemometrics and Intelligent Laboratory Systems [ISSN 0169-7439], v. 207, 104189, (Diciembre 2020)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

4
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 15-dic-2024

Visitas

129
actualizado el 23-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.